Oscillatory multiband dynamics of free particles:: The ubiquity of zitterbewegung effects

被引:58
作者
Winkler, R. [1 ]
Zulicke, U.
Bolte, Jens
机构
[1] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Massey Univ, Inst Fundamental Sci, Palmerston North, New Zealand
[4] Massey Univ, MacDiarmid Inst Adv Mat & Nanotechnol, Palmerston North, New Zealand
[5] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
关键词
D O I
10.1103/PhysRevB.75.205314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the Dirac theory for the motion of free relativistic electrons, highly oscillatory components appear in the time evolution of physical observables such as position, velocity, and spin angular momentum. This effect is known as zitterbewegung. We present a theoretical analysis of rather different Hamiltonians with gapped and/or spin-split energy spectrum (including the Rashba, Luttinger, and Kane Hamiltonians) that exhibit analogs of zitterbewegung as a common feature. We find that the amplitude of oscillations of the Heisenberg velocity operator v(t) generally equals the uncertainty for a simultaneous measurement of two linearly independent components of v. It is also shown that many features of zitterbewegung are shared by the simple and well-known Landau Hamiltonian, describing the dynamics of two-dimensional (2D) electron systems in the presence of a magnetic field perpendicular to the plane. Finally, we also discuss the oscillatory dynamics of 2D electrons arising from the interplay of Rashba spin splitting and a perpendicular magnetic field.
引用
收藏
页数:10
相关论文
共 53 条
[1]  
Barnett S., 1997, Methods of Theoretical Quantum Optics
[2]   ZITTERBEWEGUNG AND THE INTERNAL GEOMETRY OF THE ELECTRON [J].
BARUT, AO ;
BRACKEN, AJ .
PHYSICAL REVIEW D, 1981, 23 (10) :2454-2463
[3]   ZITTERBEWEGUNG OF THE ELECTRON IN EXTERNAL FIELDS [J].
BARUT, AO ;
THACKER, WD .
PHYSICAL REVIEW D, 1985, 31 (08) :2076-2088
[4]   COVARIANT GENERALIZATION OF THE ZITTERBEWEGUNG OF THE ELECTRON AND ITS SO(4,2) AND SO(3,2) INTERNAL ALGEBRAS [J].
BARUT, AO ;
THACKER, W .
PHYSICAL REVIEW D, 1985, 31 (06) :1386-1392
[5]   Self-consistent mean-field models for nuclear structure [J].
Bender, M ;
Heenen, PH ;
Reinhard, PG .
REVIEWS OF MODERN PHYSICS, 2003, 75 (01) :121-180
[6]  
BERNARDES ES, CONDMAT0607218
[7]   Zitterbewegung and semiclassical observables for the Dirac equation [J].
Bolte, J ;
Glaser, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (24) :6359-6373
[8]   Spin Hall effect and zitterbewegung in an electron waveguide [J].
Brusheim, P. ;
Xu, H. Q. .
PHYSICAL REVIEW B, 2006, 74 (20)
[9]   OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS [J].
BYCHKOV, YA ;
RASHBA, EI .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33) :6039-6045
[10]   Imaging spin flows in semiconductors subject to electric, magnetic, and strain fields [J].
Crooker, SA ;
Smith, DL .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)