Objective-The objective of this study was to investigate the effects of fluvastatin on atherosclerosis, systemic and regional hemodynamics, and vascular reactivity in apolipoprotein E-deficient (ApoE(-/-)) mice. Methods and Results-Hemodynamics (fluospheres) and vasomotor responses of thoracic aorta and carotid artery were evaluated in male wild-type (WT) and untreated (ApoE(-/-) Control) or fluvastatin-treated (50 mg/kg per day for 20 weeks) ApoE(-/-) mice, all fed a Western-type diet. Plasma cholesterol and aortic root atherosclerotic lesions (ALs) were greater in ApoE(-/-) Control mice (19+/-1 mmol/L and 63 0176+/-38 785 mum(2), respectively) than in WT mice (2+/-1 mmol/L and 1+/-1 mum(2), respectively, P<0.01). Fluvastatin significantly decreased plasma cholesterol (-53%) but failed to limit ALs. Renal blood flow was significantly reduced in ApoE(-/-) Control versus WT (-25%, P<0.05) mice. This reduction was prevented by fluvastatin. Aortic and carotid endothelium-dependent relaxations to acetylcholine were not altered in ApoE(-/-) Control versus WT mice. In carotid arteries from WT mice, these responses were abolished after nitro-L-arginine (L-NA), whereas those from ApoE(-/-) Control were only partially inhibited after L-NA but fully abolished after L-NA+diclofenac. Thus, in carotid arteries from ApoE(-/-) mice, vasodilating prostanoids compensate the deficit in NO availability. Fluvastatin prevented this carotid NO deficit. Conclusions-In ApoE(-/-) mice, chronic fluvastatin treatment preserved renal perfusion and vascular NO availability independently from atherosclerotic lesion prevention.