n→∞ limit of O(n) ferromagnetic models on graphs

被引:14
作者
Burioni, R
Cassi, D
Destri, C
机构
[1] Univ Parma, Ist Nazl Fis Mat, Dipartimento Fis, I-43100 Parma, Italy
[2] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[3] Univ Milan, Ist Nazl Fis Nucl, I-20133 Milan, Italy
关键词
Generic discrete structure - Heisenberg model - Mermin-Wagner theorem;
D O I
10.1103/PhysRevLett.85.1496
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thirty years ago, H.E. Stanley showed that an O(n) spin model on a lattice tends to a spherical model as n --> infinity. This means that at any temperature the corresponding free energies coincide. This fundamental result is no longer valid on more general discrete structures lacking in translation invariance, i.e., on graphs. However, only the singular parts of the free energies determine the critical behavior of the two statistical models. Here we show that for ferromagnetic models such singular parts still coincide even on graphs in the thermodynamic limit. This implies that the critical exponents of O(n) models on graphs for n --> infinity tend to the spherical ones and depend only on the graph spectral dimension.
引用
收藏
页码:1496 / 1499
页数:4
相关论文
共 9 条
[1]   Spectral partitions on infinite graphs [J].
Burioni, R ;
Cassi, D ;
Destri, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (19) :3627-3636
[2]   Geometrical universality in vibrational dynamics [J].
Burioni, R ;
Cassi, D .
MODERN PHYSICS LETTERS B, 1997, 11 (25) :1095-1101
[3]   Universal properties of spectral dimension [J].
Burioni, R ;
Cassi, D .
PHYSICAL REVIEW LETTERS, 1996, 76 (07) :1091-1093
[4]   PHASE-TRANSITIONS AND RANDOM-WALKS ON GRAPHS - A GENERALIZATION OF THE MERMIN-WAGNER THEOREM TO DISORDERED LATTICES, FRACTALS, AND OTHER DISCRETE STRUCTURES [J].
CASSI, D .
PHYSICAL REVIEW LETTERS, 1992, 68 (24) :3631-3634
[5]  
GLIMM J, 1987, QUANTUM PHYSICS FUNC
[6]  
HATTORI K, 1987, PROG THEOR PHYS SUPP, V92, P108
[7]  
KAC M, 1971, PHYS NORV, V5, P163
[8]  
KHORUNZHY AM, 1992, PHASE TRANSITIONS CR, V15
[9]   SPHERICAL MODEL AS LIMIT OF INFINITE SPIN DIMENSIONALITY [J].
STANLEY, HE .
PHYSICAL REVIEW, 1968, 176 (02) :718-&