Differences in cross-link chemistry between rigid and flexible dithiol molecules revealed by optical studies of CdTe quantum dots

被引:75
作者
Koole, R.
Luigjes, B.
Tachiya, M.
Pool, R.
Vlugt, T. J. H.
Donega, C. De Mello
Meijerink, A.
Vanmaekelbergh, D.
机构
[1] Univ Utrecht, Debye Inst Condensed Matter & Interface, NL-3508 TA Utrecht, Netherlands
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba 3058565, Japan
关键词
D O I
10.1021/jp072407x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The cross-link chemistry of CdTe quantum dots (QDs) in solution is studied for different types of aliphatic ( flexible) and aromatic ( rigid) dithiol linker molecules. A remarkable difference in the cross-linking efficiency is observed: the rigid dithiols are shown to form aggregates at much lower concentrations. Qualitative and quantitative information on the formation of aggregates is obtained from cryogenic transmission electron microscopy (cryo-TEM) images and photoluminescence decay measurements. The luminescence decay curves are analyzed with a model for energy transfer to neighboring QDs in aggregates. The analysis shows that the cross-linking efficiency is 4 times higher for the rigid dithiols than for the flexible dithiols. The difference is attributed to the formation of loops for the flexible dithiols by attaching with both thiol groups to the same nanocrystal surface ( preventing cross-linking), whereas the rigid aromatic dithiols cannot form loops and the second thiol group is oriented away from the surface (enabling cross-linking). The difference in conformation between flexible and rigid dithiols is confirmed by studies on the red-shift in the optical absorption spectra due to capping exchange of amines by monothiols or dithiols and by molecular simulations.
引用
收藏
页码:11208 / 11215
页数:8
相关论文
共 35 条
[1]   Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies [J].
Achermann, M ;
Petruska, MA ;
Crooker, SA ;
Klimov, VI .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (50) :13782-13787
[2]   Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals [J].
Aldana, J ;
Lavelle, N ;
Wang, YJ ;
Peng, XG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (08) :2496-2504
[3]   Binary mixtures of self-assembled monolayers of 1,8-octanedithiol and 1-octanethiol for a controlled growth of gold nanoparticles [J].
Aliganga, Anne Kathrena A. ;
Duwez, Anne-Sophie ;
Mittler, Silvia .
ORGANIC ELECTRONICS, 2006, 7 (05) :337-350
[4]   FORMATION OF MONOLAYER FILMS BY THE SPONTANEOUS ASSEMBLY OF ORGANIC THIOLS FROM SOLUTION ONTO GOLD [J].
BAIN, CD ;
TROUGHTON, EB ;
TAO, YT ;
EVALL, J ;
WHITESIDES, GM ;
NUZZO, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (01) :321-335
[5]   Coupling and entangling of quantum states in quantum dot molecules [J].
Bayer, M ;
Hawrylak, P ;
Hinzer, K ;
Fafard, S ;
Korkusinski, M ;
Wasilewski, ZR ;
Stern, O ;
Forchel, A .
SCIENCE, 2001, 291 (5503) :451-453
[6]  
Brousseau LC, 1999, ADV MATER, V11, P447, DOI 10.1002/(SICI)1521-4095(199904)11:6<447::AID-ADMA447>3.0.CO
[7]  
2-I
[8]   Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials [J].
Crooker, SA ;
Hollingsworth, JA ;
Tretiak, S ;
Klimov, VI .
PHYSICAL REVIEW LETTERS, 2002, 89 (18)
[9]   Measurement of the conductance of single conjugated molecules (vol 436, pg 677, 2005) [J].
Dadosh, T ;
Gordin, Y ;
Krahne, R ;
Khivrich, I ;
Mahalu, D ;
Frydman, V ;
Sperling, J ;
Yacoby, A ;
Bar-Joseph, I .
NATURE, 2005, 436 (7054) :1200-1200
[10]   Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots [J].
Donega, C. de Mello ;
Bode, M. ;
Meijerink, A. .
PHYSICAL REVIEW B, 2006, 74 (08)