Krh1p and Krh2p act downstream of the Gpa2p Gα subunit to negatively regulate haploid invasive growth

被引:43
作者
Batlle, M [1 ]
Lu, AL [1 ]
Green, DA [1 ]
Xue, Y [1 ]
Hirsch, JP [1 ]
机构
[1] CUNY Mt Sinai Sch Med, Brookdale Dept Mol Cell & Dev Biol, New York, NY 10029 USA
关键词
GPA2; KRH1; KRH2; kelch repeat;
D O I
10.1242/jcs.00266
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The yeast G(alpha) subunit Gpa2p and its coupled receptor Gpr1p function in a signaling pathway that is required for the transition to pseudohyphal and invasive growth. A two-hybrid screen using a constitutively active allele of GPA2 identified the KRH1 gene as encoding a potential binding partner of Gpa2p. Strains containing deletions of KRH1 and its homolog KRH2 were hyper-invasive and displayed a high level of expression of FLO11, a gene involved in pseudohyphal and invasive growth. Therefore, KRH1 and KRH2 encode negative regulators of the invasive growth pathway. Cells containing krh1Delta krh2Delta mutations also displayed increased sensitivity to heat shock and decreased sporulation efficiency, indicating that Krh1p and Krh2p regulate multiple processes controlled by the cAMP/PKA pathway. The krh1Delta krh2Delta mutations suppressed the effect of a gpa2Delta mutation on FLO11 expression and eliminated the effect of a constitutively active GPA2 allele on induction of FLO11 and heat shock sensitivity, suggesting that Krh1p and Krh2p act downstream of Gpa2p. The Sch9p kinase was not required for the signal generated by deletion of KRH1 and KRH2; however, the cAMP-dependent kinase Tpk2p was required for generation of this signal. These results support a model in which activation of Gpa2p relieves the inhibition exerted by Krh1p and Krh2p on components of the cAMP/PKA signaling pathway.
引用
收藏
页码:701 / 710
页数:10
相关论文
共 45 条
[1]   The kelch repeat superfamily of proteins: propellers of cell function [J].
Adams, J ;
Kelso, R ;
Cooley, L .
TRENDS IN CELL BIOLOGY, 2000, 10 (01) :17-24
[2]  
Bores-Walmsley MI, 2000, TRENDS MICROBIOL, V8, P133, DOI 10.1016/S0966-842X(00)01698-X
[3]   RAS GENES IN SACCHAROMYCES-CEREVISIAE - SIGNAL TRANSDUCTION IN SEARCH OF A PATHWAY [J].
BROACH, JR .
TRENDS IN GENETICS, 1991, 7 (01) :28-33
[4]   CAMP-INDEPENDENT CONTROL OF SPORULATION, GLYCOGEN-METABOLISM, AND HEAT-SHOCK RESISTANCE IN S-CEREVISIAE [J].
CAMERON, S ;
LEVIN, L ;
ZOLLER, M ;
WIGLER, M .
CELL, 1988, 53 (04) :555-566
[5]   Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae [J].
Colombo, S ;
Ma, PS ;
Cauwenberg, L ;
Winderickx, J ;
Crauwels, M ;
Teunissen, A ;
Nauwelaers, D ;
de Winde, JH ;
Gorwa, MF ;
Colavizza, D ;
Thevelein, JM .
EMBO JOURNAL, 1998, 17 (12) :3326-3341
[6]   The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway [J].
Crauwels, M ;
Donaton, MCV ;
Pernambuco, MB ;
Winderickx, J ;
deWinde, JH ;
Thevelein, JM .
MICROBIOLOGY-UK, 1997, 143 :2627-2637
[7]  
Cross FR, 1997, YEAST, V13, P647, DOI 10.1002/(SICI)1097-0061(19970615)13:7<647::AID-YEA115>3.0.CO
[8]  
2-#
[9]   Glucose depletion causes haploid invasive growth in yeast [J].
Cullen, PJ ;
Sprague, GF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13619-13624
[10]  
FREISSMUTH M, 1989, J BIOL CHEM, V264, P21907