Inactivation of Kv2.1 potassium channels

被引:129
作者
Klemic, KG [1 ]
Shieh, CC
Kirsch, GE
Jones, SW
机构
[1] Case Western Reserve Univ, Dept Physiol & Biophys, Cleveland, OH 44106 USA
[2] Metrohlth Med Ctr, Rammelkamp Ctr Res, Cleveland, OH 44109 USA
关键词
D O I
10.1016/S0006-3495(98)77888-9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent (tau = 4 s at 0 mV; tau = 7 s at +80 mV). However, recovery from inactivation was strongly voltage dependent (e-fold for 20 mV) and could be rapid (tau = 0.27 s at -140 mV). Kv2.1 showed cumulative inactivation, where inactivation built up during a train of brief depolarizations. A single maintained depolarization produced more steady-state inactivation than a train of pulses, but there could actually be more inactivation with the repeated pulses during the first few seconds. We term this phenomenon "excessive cumulative inactivation." These results can be explained by an allosteric model, in which inactivation is favored by activation of voltage sensors, but the open state of the channel is resistant to inactivation.
引用
收藏
页码:1779 / 1789
页数:11
相关论文
共 65 条
[1]   INACTIVATION OF DELAYED OUTWARD CURRENT IN MOLLUSCAN NEURON SOMATA [J].
ALDRICH, RW ;
GETTING, PA ;
THOMPSON, SH .
JOURNAL OF PHYSIOLOGY-LONDON, 1979, 291 (JUN) :507-530
[2]   MECHANISM OF FREQUENCY-DEPENDENT BROADENING OF MOLLUSCAN NEURON SOMA SPIKES [J].
ALDRICH, RW ;
GETTING, PA ;
THOMPSON, SH .
JOURNAL OF PHYSIOLOGY-LONDON, 1979, 291 (JUN) :531-544
[4]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[5]   DIFFERENTIAL EXPRESSION OF VOLTAGE-GATED K+ CHANNEL SUBUNITS IN ADULT-RAT HEART - RELATION TO FUNCTIONAL K+ CHANNELS [J].
BARRY, DM ;
TRIMMER, JS ;
MERLIE, JP ;
NERBONNE, JM .
CIRCULATION RESEARCH, 1995, 77 (02) :361-369
[6]   Use-dependent blockers and exit rate of the last ion from the multi-ion pore of a K+ channel [J].
Baukrowitz, T ;
Yellen, G .
SCIENCE, 1996, 271 (5249) :653-656
[7]   In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes [J].
Brahmajothi, MV ;
Morales, MJ ;
Liu, SG ;
Rasmusson, RL ;
Campbell, DL ;
Strauss, HC .
CIRCULATION RESEARCH, 1996, 78 (06) :1083-1089
[8]   A VOLTAGE-GATED POTASSIUM CHANNEL IN HUMAN LYMPHOCYTES-T [J].
CAHALAN, MD ;
CHANDY, KG ;
DECOURSEY, TE ;
GUPTA, S .
JOURNAL OF PHYSIOLOGY-LONDON, 1985, 358 (JAN) :197-237
[9]   THE KINETICS OF RECOVERY AND DEVELOPMENT OF POTASSIUM CHANNEL INACTIVATION IN PERFUSED SQUID (LOLIGO-PEALEI) GIANT-AXONS [J].
CHABALA, LD .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 356 (NOV) :193-220
[10]   EVIDENCE FOR 2 TYPES OF SODIUM CONDUCTANCE IN AXONS PERFUSED WITH SODIUM FLUORIDE SOLUTION [J].
CHANDLER, WK ;
MEVES, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1970, 211 (03) :653-&