Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8

被引:252
作者
Stennicke, HR
Renatus, M
Meldal, M
Salvesen, GS
机构
[1] Burnham Inst, Program Apoptosis & Cell Death Res, La Jolla, CA 92037 USA
[2] Carlsberg Lab, Dept Chem, Ctr Solid Phase Organ Combinatorial Chem, DK-2500 Copenhagen, Denmark
关键词
apoptosis; specificity; protease;
D O I
10.1042/0264-6021:3500563
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Subsite interactions are considered to define the stringent specificity of proteases for their natural substrates. To probe this issue in the proteolytic pathways leading to apoptosis we have examined the P-4, P-1 and P-1' subsite preferences of human caspases 1, 3, 6, 7 and 8, using internally quenched fluorescent peptide substrates containing o-aminobenzoyl (also known as anthranilic acid) and 3-nitro-tyrosine. Previous work has demonstrated the importance of the S-4 subsite in directing specificity within the caspase family. Here we demonstrate the influence of the S-1 and S-1' subsites that flank the scissile peptide bond. The S-1 subsite, the major specificity-determining site of the caspases, demonstrates tremendous selectivity, with a 20000-fold preference for cleaving substrates containing aspartic acid over glutamic acid at this position. Thus caspases are among the most selective of known endopeptidases. We find that the caspases show an unexpected degree of discrimination in the P-1' position, with a general preference for small amino acid residues such as alanine, glycine and serine, with glycine being the preferred substituent. Large aromatic residues are also surprisingly well-tolerated, but charged residues are prohibited. While this describes the general order of P-1' subsite preferences within the caspase family, there are some differences in individual profiles, with caspase-3 being particularly promiscuous. Overall, the subsite preferences can be used to predict natural substrates, but in certain cases the cleavage site within a presumed natural substrate cannot be predicted by looking for the preferred peptide cleavage sites. In the latter case we conclude that second-site interactions may overcome otherwise sub-optimal cleavage sequences.
引用
收藏
页码:563 / 568
页数:6
相关论文
共 42 条
[1]   The three-dimensional structure of caspase-8:: an initiator enzyme in apoptosis [J].
Blanchard, H ;
Kodandapani, L ;
Mittl, PRE ;
Di Marco, S ;
Krebs, JF ;
Wu, JC ;
Tomaselli, KJ ;
Grütter, MG .
STRUCTURE, 1999, 7 (09) :1125-1133
[2]   REFINED 1.2-A CRYSTAL-STRUCTURE OF THE COMPLEX FORMED BETWEEN SUBTILISIN CARLSBERG AND THE INHIBITOR EGLIN-C - MOLECULAR-STRUCTURE OF EGLIN AND ITS DETAILED INTERACTION WITH SUBTILISIN [J].
BODE, W ;
PAPAMOKOS, E ;
MUSIL, D ;
SEEMUELLER, U ;
FRITZ, H .
EMBO JOURNAL, 1986, 5 (04) :813-818
[3]   SUBSTRATE PREFERENCES OF GLUTAMIC-ACID-SPECIFIC ENDOPEPTIDASES ASSESSED BY SYNTHETIC PEPTIDE-SUBSTRATES BASED ON INTRAMOLECULAR FLUORESCENCE QUENCHING [J].
BREDDAM, K ;
MELDAL, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 206 (01) :103-107
[4]   Apopain/CPP32 cleaves proteins that are essential for cellular repair: A fundamental principle of apoptotic death [J].
CasciolaRosen, L ;
Nicholson, DW ;
Chong, T ;
Rowan, KR ;
Thornberry, NA ;
Miller, DK ;
Rosen, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (05) :1957-1964
[5]   ACTIVATION OF THE APOPTOTIC PROTEASE CPP32 BY CYTOTOXIC T-CELL-DERIVED GRANZYME-B [J].
DARMON, AJ ;
NICHOLSON, DW ;
BLEACKLEY, RC .
NATURE, 1995, 377 (6548) :446-448
[6]   ORIGINS OF THE SPECIFICITY OF TISSUE-TYPE PLASMINOGEN-ACTIVATOR [J].
DING, L ;
COOMBS, GS ;
STRANDBERG, L ;
NAVRE, M ;
COREY, DR ;
MADISON, EL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7627-7631
[7]   Purification and catalytic properties of human caspase family members [J].
Garcia-Calvo, M ;
Peterson, EP ;
Rasper, DM ;
Vaillancourt, JP ;
Zamboni, R ;
Nicholson, DW ;
Thornberry, NA .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (04) :362-369
[8]   Inhibition of human caspases by peptide-based and macromolecular inhibitors [J].
Garcia-Calvo, M ;
Peterson, EP ;
Leiting, B ;
Ruel, R ;
Nicholson, DW ;
Thornberry, NA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (49) :32608-32613
[9]   Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis - Evidence for involvement of caspase-7 [J].
Germain, M ;
Affar, EB ;
D'Amours, D ;
Dixit, VM ;
Salvesen, GS ;
Poirier, GG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (40) :28379-28384
[10]   Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation [J].
Gervais, FG ;
Xu, DG ;
Robertson, GS ;
Vaillancourt, JP ;
Zhu, YX ;
Huang, JQ ;
LeBlanc, A ;
Smith, D ;
Rigby, M ;
Shearman, MS ;
Clarke, FE ;
Zheng, H ;
Van Der Ploeg, LHT ;
Ruffolo, SC ;
Thornberry, NA ;
Xanthoudakis, S ;
Zamboni, RJ ;
Roy, S ;
Nicholson, DW .
CELL, 1999, 97 (03) :395-406