A quadruple photoreceptor mutant still keeps track of time

被引:72
作者
Yanovsky, MJ [1 ]
Mazzella, MA [1 ]
Casal, JJ [1 ]
机构
[1] Univ Buenos Aires, Fac Agron, IFEVA, RA-1417 Buenos Aires, DF, Argentina
关键词
D O I
10.1016/S0960-9822(00)00651-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Time measurement and light detection are inextricably linked. Cryptochromes, the blue light photoreceptors shared between plants and animals, are critical for circadian rhythms in flies and mice [1-3]. WC-1, a putative blue-light photoreceptor, is also essential for the maintenance of circadian rhythms in Neorospora [4]. In contrast, we report here that in Arabidopsis thaliana the double mutant lacking the cryptochromes cry1 and cry2, and even a quadruple mutant lacking the red/ far-red photoreceptor phytochromes phyA and phyB as well as cry1 and cry2, retain robust circadian rhythmicity. interestingly, the quadruple mutant was nearly blind for developmental responses but perceived a light cue for entraining the circadian clock. These results indicate that cryptochromes and phytochromes are not essential components of the central oscillator in Arabidopsis and suggest that plants could possess specific photosensory mechanisms for temporal orientation, in addition to cryptochromes and phytochromes, which are used for both spatial and temporal adaptation.
引用
收藏
页码:1013 / 1015
页数:3
相关论文
共 23 条
[1]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[2]   Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis [J].
Casal, JJ ;
Mazzella, MA .
PLANT PHYSIOLOGY, 1998, 118 (01) :19-25
[3]   Cryptochromes: Blue light receptors for plants and animals [J].
Cashmore, AR ;
Jarillo, JA ;
Wu, YJ ;
Liu, DM .
SCIENCE, 1999, 284 (5415) :760-765
[4]   Neurospora wc-1 and wc-2: Transcription, photoresponses, and the origins of circadian rhythmicity [J].
Crosthwaite, SK ;
Dunlap, JC ;
Loros, JJ .
SCIENCE, 1997, 276 (5313) :763-769
[5]   Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time [J].
Devlin, PF ;
Robson, PRH ;
Patel, SR ;
Goosey, L ;
Sharrock, RA ;
Whitelam, GC .
PLANT PHYSIOLOGY, 1999, 119 (03) :909-915
[6]   Drosophila cryptochromes -: A unique circadian-rhythm photoreceptor [J].
Emery, P ;
Stanewsky, R ;
Hall, JC ;
Rosbash, M .
NATURE, 2000, 404 (6777) :456-457
[7]   Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors [J].
Freedman, MS ;
Lucas, RJ ;
Soni, B ;
von Schantz, M ;
Muñoz, M ;
David-Gray, Z ;
Foster, R .
SCIENCE, 1999, 284 (5413) :502-504
[8]   Regulations of flowering time by Arabidopsis photoreceptors [J].
Guo, HW ;
Yang, WY ;
Mockler, TC ;
Lin, CT .
SCIENCE, 1998, 279 (5355) :1360-1363
[9]   Circadian clocks:: A cry in the dark? [J].
Lucas, RJ ;
Foster, RG .
CURRENT BIOLOGY, 1999, 9 (21) :R825-R828
[10]   THE REGULATION OF CIRCADIAN PERIOD BY PHOTOTRANSDUCTION PATHWAYS IN ARABIDOPSIS [J].
MILLAR, AJ ;
STRAUME, M ;
CHORY, J ;
CHUA, NH ;
KAY, SA .
SCIENCE, 1995, 267 (5201) :1163-1166