Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress

被引:867
作者
Meloni, DA
Oliva, MA [1 ]
Martinez, CA
Cambraia, J
机构
[1] Univ Fed Vicosa, Dept Plant Biol, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Gen Biol, BR-36571000 Vicosa, MG, Brazil
关键词
cotton; salt tolerance; superoxide dismutase; peroxidase; glutathione reductase; photosynthesis;
D O I
10.1016/S0098-8472(02)00058-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effects of NaCl stress on the activity of antioxidant enzyme such as superoxide dismutase (SOD: EC 1.15.1.1), peroxidase (POD: EC 1.11.1.7), glutathione reductase (GR: EC 1.6.4.2), rate of lipid peroxidation, gas-exchange, chlorophyll content and chlorophyll fluorescence were investigated in two cotton cultivars, Guazuncho and Pora (hybrids between Gossypium hirsutum x G. arboretum x G. raimondii) grown in nutrient solution. Plants were treated with three salt concentrations (50, 100 and 200 mol m(-3) NaCl) for 21 days. The SOD activity in Pora increases with the increase in the intensity of NaCl stress, but salt treatment had no significant effect on this enzyme activity in Guazuncho. The POD and GR activities showed similar trends under salt stress, in both cotton cultivars. In Pora, there was an average increase in GR activity of about 53%, but there was no further increase at higher NaCl concentrations. In Guazuncho, no change in GR activity was observed. Net photosynthesis and stomatal conductance decreased in response to salt stress, but Pora showed a smaller reduction in photosynthesis than Guazuncho. The results indicated that stomatal aperture limited leaf photosynthetic capacity in the NaCl-treated plants of both cultivars. However, significant reduction in the leaf chlorophyll contents due to NaCl stress was observed only on Guazuncho. In both cotton cultivars, the photochemical efficiency of PSII was not affected by salt stress. These results suggest that salt-tolerant cotton varieties may have a better protection against reactive oxygen species (ROS) by increasing the activity of antioxidant enzymes under salt stress. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:69 / 76
页数:8
相关论文
共 35 条
[1]   DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS [J].
ALLEN, RD .
PLANT PHYSIOLOGY, 1995, 107 (04) :1049-1054
[2]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[3]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[4]   Oxidative stress in plants [J].
Bartosz, G .
ACTA PHYSIOLOGIAE PLANTARUM, 1997, 19 (01) :47-64
[5]   CELL-MEMBRANE STABILITY AS A MEASURE OF DROUGHT AND HEAT TOLERANCE IN WHEAT [J].
BLUM, A ;
EBERCON, A .
CROP SCIENCE, 1981, 21 (01) :43-47
[6]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]  
Bray E.A., 2000, Biochem. Mol. Biol. Plants (Buchanan, B. B., Gruissem, W. Jones, P1158, DOI DOI 10.12691/WJAR-2-2-2
[9]   OXIDATIVE STRESS RESPONSES IN TRANSGENIC TOBACCO CONTAINING ALTERED LEVELS OF GLUTATHIONE-REDUCTASE ACTIVITY [J].
BROADBENT, P ;
CREISSEN, GP ;
KULAR, B ;
WELLBURN, AR ;
MULLINEAUX, PM .
PLANT JOURNAL, 1995, 8 (02) :247-255
[10]   EFFECTS OF SALINITY ON STOMATAL CONDUCTANCE, PHOTOSYNTHETIC CAPACITY, AND CARBON ISOTOPE DISCRIMINATION OF SALT-TOLERANT (GOSSYPIUM-HIRSUTUM L) AND SALT-SENSITIVE (PHASEOLUS-VULGARIS L) C3 NON-HALOPHYTES [J].
BRUGNOLI, E ;
LAUTERI, M .
PLANT PHYSIOLOGY, 1991, 95 (02) :628-635