Recovering information from synthetic air quality indices

被引:11
作者
Bruno, Francesca [1 ]
Cocchi, Daniela [1 ]
机构
[1] Univ Bologna, Dept Stat P Fortunati, I-40126 Bologna, Italy
关键词
environmental indices; index distribution; multinomial logit regression; GEV-GPD; kernel smoothing;
D O I
10.1002/env.834
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Synthetic. indices are often used to condense complex situations into a single figure. However, this condensing process risks losing potentially useful information, especially when the index is to be milised by public decision-making bodies. The present study proposes a general strategy, combining a number of different methods, designed to recover information from air-quality indices: graphical methods to reconstruct the composition of pollution, multinornial logit analysis to study the influence of meteorological covariates on air-quality indices, and finally, a probability distribution for the index itself as a basic tool with which to interpret the index's crucial values. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 16 条
[1]  
[Anonymous], EPA454R99010 OFF AIR
[2]   A unified strategy for building simple air quality indices [J].
Bruno, F ;
Cocchi, D .
ENVIRONMETRICS, 2002, 13 (03) :243-261
[3]  
*CEQ, 1976, FED INT TASK FORC AI
[4]  
Coles S., 2001, INTRO STAT MODELING, DOI DOI 10.1007/978-1-4471-3675-0
[5]  
DESERTI M, 2002, 102002 ARPA SMR
[6]  
*DMA, 1996, ATT SIST SORV INQ OZ
[7]  
*DMA, 1994, NOM TECHN MAT LIV ST
[8]  
*EPA, 2003, AIR QUAL IND GUID AI
[9]  
*GU, 2002, 60 GU DECR MIN, V77
[10]  
Hosmer D, 2000, Applied Logistic Regression, V2nd, DOI DOI 10.1002/0471722146.CH4