Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes

被引:320
作者
Barbero, A [1 ]
Ploegert, S [1 ]
Heberer, M [1 ]
Martin, I [1 ]
机构
[1] Univ Basel Hosp, Dept Surg, ZLF, CH-4031 Basel, Switzerland
来源
ARTHRITIS AND RHEUMATISM | 2003年 / 48卷 / 05期
关键词
D O I
10.1002/art.10950
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. To investigate whether adult human articular chondrocytes (AHACs), dedifferentiated by monolayer expansion, can differentiate toward diverse mesenchymal lineages and, if so, whether this ability is regulated by growth factors during monolayer expansion. Methods. AHACs were expanded as multiclonal or clonal populations in medium without (control) or with factors enhancing cell dedifferentiation (transforming growth factor beta1, fibroblast growth factor 2, and platelet-derived growth factor type BB [TFP]). Cells were then cultured under conditions promoting chondrogenic, osteogenic, or adipogenic differentiation, and the acquired phenotypes were assessed histologically, biochemically, and by real-time reverse transcriptase-polymerase chain reaction. Results. Multiclonal populations of both control- and TFP-expanded AHACs differentiated toward the chondrogenic, osteogenic, and adipogenic lineages. Compared with control-expanded AHACs, TFP-expanded cells displayed enhanced chondrogenic differentiation capacity (2.4-fold higher glycosaminoglycan/DNA content and 2,500-fold higher up-regulation of type 11 collagen) and osteogenic differentiation capacity (9.4-fold higher increase in alkaline phosphatase activity and 12.4-fold higher up-regulation of bone sialoprotein), but reduced formation of adipocytes (5.2-fold lower oil red O-positive cells/area). Clonal populations of AHACs could be efficiently expanded in TFP, but not in control medium. Most TFP-expanded clones were able to redifferentiate only into chondrocytes (7 of 20) or were unable to differentiate (6 of 20). However, some clones (2 of 20) differentiated toward all of the lineages investigated, thus displaying characteristics of mesenchymal progenitor cells. Conclusion. Dedifferentiated AHACs exhibit differentiation plasticity, which is modulated by growth factors used during monolayer expansion and is highly heterogeneous across different clones. Clonal culture of AHACs in the presence of regulatory molecules could lead to the identification of AHAC subpopulations with enhanced cartilage repair capacity.
引用
收藏
页码:1315 / 1325
页数:11
相关论文
共 44 条
  • [1] Transforming growth factor β2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma
    Ahdjoudj, S
    Lasmoles, F
    Holy, X
    Zerath, E
    Marie, PJ
    [J]. JOURNAL OF BONE AND MINERAL RESEARCH, 2002, 17 (04) : 668 - 677
  • [2] DEDIFFERENTIATED CHONDROCYTES REEXPRESS THE DIFFERENTIATED COLLAGEN PHENOTYPE WHEN CULTURED IN AGAROSE GELS
    BENYA, PD
    SHAFFER, JD
    [J]. CELL, 1982, 30 (01) : 215 - 224
  • [3] Bone formation via cartilage models: The "borderline" chondrocyte
    Bianco, P
    Cancedda, FD
    Riminucci, M
    Cancedda, R
    [J]. MATRIX BIOLOGY, 1998, 17 (03) : 185 - 192
  • [4] Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro
    Binette, F
    McQuaid, DP
    Haudenschild, DR
    Yaeger, PC
    McPherson, JM
    Tubo, R
    [J]. JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (02) : 207 - 216
  • [5] HYPERTROPHIC CHONDROCYTES UNDERGO FURTHER DIFFERENTIATION IN CULTURE
    CANCEDDA, FD
    GENTILI, C
    MANDUCA, P
    CANCEDDA, R
    [J]. JOURNAL OF CELL BIOLOGY, 1992, 117 (02) : 427 - 435
  • [6] MESENCHYMAL STEM-CELLS
    CAPLAN, AI
    [J]. JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (05) : 641 - 650
  • [7] De Bari C, 2001, ARTHRITIS RHEUM-US, V44, P1928, DOI 10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO
  • [8] 2-P
  • [9] IMPROVED QUANTITATION AND DISCRIMINATION OF SULFATED GLYCOSAMINOGLYCANS BY USE OF DIMETHYLMETHYLENE BLUE
    FARNDALE, RW
    BUTTLE, DJ
    BARRETT, AJ
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 883 (02) : 173 - 177
  • [10] Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro
    Frank, O
    Heim, M
    Jakob, M
    Barbero, A
    Schäfer, D
    Bendik, I
    Dick, W
    Heberer, M
    Martin, I
    [J]. JOURNAL OF CELLULAR BIOCHEMISTRY, 2002, 85 (04) : 737 - 746