Optimal encryption of quantum bits

被引:237
作者
Boykin, PO [1 ]
Roychowdhury, V [1 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
D O I
10.1103/PhysRevA.67.042317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that 2n random classical bits are both necessary and sufficient for encrypting any unknown state of n quantum bits in an informationally secure manner. We also characterize the complete set of optimal protocols in terms of a set of unitary operations that comprise an orthonormal basis in a canonical inner product space. Moreover, a connection is made between quantum encryption and quantum teleportation that allows for a different proof of optimality of teleportation.
引用
收藏
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1993, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics
[2]  
BARNUM H, QUANTPH0205128
[3]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[4]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[5]   Quantum cryptographic network based on quantum memories [J].
Biham, E ;
Huttner, B ;
Mor, T .
PHYSICAL REVIEW A, 1996, 54 (04) :2651-2658
[6]  
BOYKIN PO, QUANTPH0003059
[7]  
Golub G. H., 2013, Matrix Computations
[8]  
Holevo A. S., 1973, PROBL PEREDACHI INF, V9, P177
[9]  
Leung DW, 2002, QUANTUM INF COMPUT, V2, P14
[10]  
PEREZ E, QUANTPH0209061