Convergence of solutions of second-order gradient-like systems with analytic nonlinearities

被引:87
作者
Haraux, A [1 ]
Jendoubi, MA [1 ]
机构
[1] Univ Pierre & Marie Curie, Anal Numer Lab, F-75230 Paris 05, France
关键词
D O I
10.1006/jdeq.1997.3393
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the second-order gradient-like system U-tt + g(U-t) = del F(U) where F: R-N --> R is analytic and g: R-N --> R-N is Lipschitz and coercive with g(0) = 0. We prove the convergence of global and bounded solutions of ii) to some equilibrium points. (C) 1998 Academic Press.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 9 条
[1]   CONVERGENCE IN GRADIENT-LIKE SYSTEMS WITH APPLICATIONS TO PDE [J].
HALE, JK ;
RAUGEL, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (01) :63-124
[2]   ASYMPTOTICS FOR SOME NONLINEAR ODE OF THE 2ND-ORDER [J].
HARAUX, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (12) :1347-1355
[3]  
Haraux A, 1991, RMA, V17
[4]  
HARAUX A, 1987, MATH REPORTS 1, V3
[5]   Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity [J].
Jendoubi, MA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 144 (02) :302-312
[6]  
LOJASIEWICZ S, 1963, C INT CNRS EQUATIONS, V117
[7]  
Lojasiewicz S., 1965, Ensembles Semi-Analytiques
[8]  
Palis J., 1982, GEOMETRIC THEORY DYN