Study of poly(o-ethoxyaniline) interactions with herbicides and evaluation of conductive polymer potential used in electrochemical sensors

被引:14
作者
Consolin Filho, Nelson [1 ]
Leite, Fábio de Lima [1 ]
Carvalho, Eduarda Regina [1 ]
Venancio, Everaldo Carlos [1 ]
Vaz, Carlos Manoel R. [1 ]
Mattoso, Luiz Henrique C. [1 ]
机构
[1] Embrapa Instrumentacao Agropecuaria, BR-13560970 Sao Carlos, SP, Brazil
关键词
interaction; conductive polymers; poly(o-ethoxyani line); POEA; sensors; herbicides; detection limits;
D O I
10.1590/S0103-50532007000300013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interactions of four aromatic nitrogen-heterocyclic herbicides (atrazine, imazaquin, metribuzin and paraquat) with the conductive polymer poly(o-ethoxyaniline)-POEA, were studied with atomic force microscopy (AFM), UV-visible spectrophotometry (UV-Vis) and electrochemical impedance spectroscopy. AFM profiles of self-assembled (SA) films of POEA revealed that the polymer surface became rougher (on the nanoscale) when exposed to atrazine, imazaquin and metribuzin, but slightly smoother in contact with paraquat. This suggested that specific chemical interactions, possibly electroscopic, have occurred between nitrogen atoms in the polymer chain and the dissimilar groups in the various herbicide molecules, during adsorption of the latter onto the film. The UV-Vis analyses indicated a stronger interaction of POEA in solution with imazaquin, that has a special importance for the intended application. Sensors produced by coating microelectrodes with SA films of POEA were used to perform impedance spectroscopy in aqueous solutions of each herbicide. With the resulting data, it was possible to distinguish and set detection limits for each herbicide in water, corroborating AFM and UV-Vis results.
引用
收藏
页码:577 / 584
页数:8
相关论文
共 41 条
[1]   Effect of selected processing parameters on solution properties and morphology of polyaniline and impact on conductivity [J].
Angelopoulos, M ;
Dipietro, R ;
Zheng, WG ;
MacDiarmid, AG ;
Epstein, AJ .
SYNTHETIC METALS, 1997, 84 (1-3) :35-39
[2]   Molecular self-assembly of conducting polymers [J].
Cheung, J.H. ;
Fou, A.F. ;
Rubner, M.F. .
Thin Solid Films, 1994, 244 (1 -2 pt 3) :985-989
[3]   Molecular-level processing of conjugated polymers .3. Layer-by-layer manipulation of polyaniline via electrostatic interactions [J].
Cheung, JH ;
Stockton, WB ;
Rubner, MF .
MACROMOLECULES, 1997, 30 (09) :2712-2716
[4]  
CHEUNG JH, 1993, POLYM PREPR AM CHEM, V34, P757
[5]  
Clark SL, 1998, ADV MATER, V10, P1515, DOI 10.1002/(SICI)1521-4095(199812)10:18<1515::AID-ADMA1515>3.0.CO
[6]  
2-E
[7]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237
[8]   PROOF OF MULTILAYER STRUCTURAL ORGANIZATION IN SELF-ASSEMBLED POLYCATION POLYANION MOLECULAR FILMS [J].
DECHER, G ;
LVOV, Y ;
SCHMITT, J .
THIN SOLID FILMS, 1994, 244 (1-2) :772-777
[9]   BUILDUP OF ULTRATHIN MULTILAYER FILMS BY A SELF-ASSEMBLY PROCESS .2. CONSECUTIVE ADSORPTION OF ANIONIC AND CATIONIC BIPOLAR AMPHIPHILES AND POLYELECTROLYTES ON CHARGED SURFACES [J].
DECHER, G ;
HONG, JD .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1991, 95 (11) :1430-1434
[10]  
Decher G, 1997, SCIENCE, V277, P1232