Kaolinite exchange between a stream and streambed: Laboratory experiments and validation of a colloid transport model

被引:110
作者
Packman, AI [1 ]
Brooks, NH [1 ]
Morgan, JJ [1 ]
机构
[1] CALTECH, WM Keck Lab Hydraul & Water Resources, Dept Environm Engn Sci, Pasadena, CA 91125 USA
关键词
D O I
10.1029/2000WR900058
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Experiments were conducted in a recirculating flume to elucidate the fundamental physical and chemical processes which control the stream-subsurface exchange of colloids. Results are presented on the rate of exchange of colloids (kaolinite day) and a conservative solute (lithium) from a stream to a sand streambed covered by stationary bed forms (dunes, ripples). Kaolinite and lithium were added to the recirculating stream, and their exchange with the bed was observed over time. Kaolinite was observed to be much more extensively trapped in the streambed than lithium owing to nonconservative processes. By the end of most experiments, essentially all added kaolinite was taken up by the streambed. The observed exchange rates can be explained by analyzing the solute and particle fluxes through the stream-subsurface interface and the physicochemical interactions between transported kaolinite and the bed sediment. The colloid pumping model predicts particle exchange based on pumping hydraulics, particle settling in the bed, and filtration by the bed sediments. Observed colloid and solute exchanges were successfully predicted by the process-based models without the use of fitting coefficients. Hydraulic parameters measured in the flume and particle parameters measured in separate experiments were used as model inputs. The successful prediction of experimental results validates the modeling approach of combining a fundamental hydraulic exchange model with a physicochemical model for colloid transport and filtration in the streambed. Further, because colloid transport behavior was interpreted in terms of basic exchange and trapping processes, the results of this study are expected to be directly applicable to the analysis of fine sediment dynamics in natural streams.
引用
收藏
页码:2363 / 2372
页数:10
相关论文
共 15 条
[1]  
Einstein H.A., 1968, J HYDRAUL ENG, V94, P1197, DOI [DOI 10.1061/JYCEAJ.0001868, 10.1061/jyceaj.0001868]
[2]  
Elimelech M., 1998, Particle deposition aggregation, measurement, modeling and simulation
[3]   Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments [J].
Elliott, AH ;
Brooks, NH .
WATER RESOURCES RESEARCH, 1997, 33 (01) :137-151
[4]   Transfer of nonsorbing solutes to a streambed with bed forms: Theory [J].
Elliott, AH ;
Brooks, NH .
WATER RESOURCES RESEARCH, 1997, 33 (01) :123-136
[5]  
Elliott AH., 1990, KHR52 CALTECH WM KEC
[6]   TRANSPORT OF ADSORBING METALS FROM STREAM WATER TO A STATIONARY SAND-BED IN A LABORATORY PLUME [J].
EYLERS, H ;
BROOKS, NH ;
MORGAN, JJ .
MARINE AND FRESHWATER RESEARCH, 1995, 46 (01) :209-214
[7]  
EYLERS H, 1994, KHR56 CALTECH KW KEC
[8]   Flow-induced uptake of particulate matter in permeable sediments [J].
Huettel, M ;
Ziebis, W ;
Forster, S .
LIMNOLOGY AND OCEANOGRAPHY, 1996, 41 (02) :309-322
[9]   COMPOSITION OF KAOLINITE - ELECTRON-MICROSCOPE MICROPROBE STUDY [J].
JEPSON, WB ;
ROWSE, JB .
CLAYS AND CLAY MINERALS, 1975, 23 (04) :310-317
[10]  
NEWMAN ACD, 1997, CHEM CLAYS CLAY MINE, P1