Glaucoma risk index: Automated glaucoma detection from color fundus images

被引:240
作者
Bock, Ruediger [1 ,2 ]
Meier, Joerg [1 ]
Nyul, Laszlo G. [3 ]
Hornegger, Joachim [1 ,2 ]
Michelson, Georg [2 ,4 ,5 ]
机构
[1] Univ Erlangen Nurnberg, Pattern Recognit Lab, Dept Comp Sci, D-91058 Erlangen, Germany
[2] Univ Erlangen Nurnberg, Erlangen Grad Sch Adv Opt Technol SAOT, D-91058 Erlangen, Germany
[3] Univ Szeged, Dept Image Proc & Comp Graph, Szeged, Hungary
[4] Univ Erlangen Nurnberg, Dept Ophthalmol, D-91058 Erlangen, Germany
[5] Univ Erlangen Nurnberg, Interdisciplinary Ctr Ophthalm Prevent Med & Imag, D-91058 Erlangen, Germany
基金
美国国家科学基金会;
关键词
Computer aided diagnosis; Glaucoma; Optic disk; Appearance-based image analysis; Linear principal component analysis; OPTIC-NERVE HEAD; VESSEL SEGMENTATION; BLOOD-VESSELS; DISC; EXTRACTION; SIGNAL; DIAGNOSIS;
D O I
10.1016/j.media.2009.12.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glaucoma as a neurodegeneration of the optic nerve is one of the most common causes of blindness. Because revitalization of the degenerated nerve fibers of the optic nerve is impossible early detection of the disease is essential. This can be supported by a robust and automated mass-screening. We propose a novel automated glaucoma detection system that operates on inexpensive to acquire and widely used digital color fundus images. After a glaucoma specific preprocessing, different generic feature types are compressed by an appearance-based dimension reduction technique. Subsequently, a probabilistic two-stage classification scheme combines these features types to extract the novel Glaucoma Risk Index (GRI) that shows a reasonable glaucoma detection performance. On a sample set of 575 fundus images a classification accuracy of 80% has been achieved in a 5-fold cross-validation setup. The GRI gains a competitive area under ROC (AUC) of 88% compared to the established topography-based glaucoma probability score of scanning laser tomography with AUC of 87%. The proposed color fundus image-based GRI achieves a competitive and reliable detection performance on a low-priced modality by the statistical analysis of entire images of the optic nerve head. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:471 / 481
页数:11
相关论文
共 59 条
[1]   Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features [J].
Abramoff, Michael D. ;
Alward, Wallace L. M. ;
Greenlee, Emily C. ;
Shuba, Lesya ;
Kim, Chan Y. ;
Fingert, John H. ;
Kwon, Young H. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2007, 48 (04) :1665-1673
[2]   An Active Contour Model for Segmenting and Measuring Retinal Vessels [J].
Al-Diri, Bashir ;
Hunter, Andrew ;
Steel, David .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (09) :1488-1497
[3]   Comparison of HRT-3 glaucoma probability score and subjective stereophotograph assessment for prediction of progression in glaucoma [J].
Alencar, Luciana M. ;
Bowd, Christopher ;
Weinreb, Robert N. ;
Zangwill, Linda M. ;
Sample, Pamela A. ;
Medeiros, Felipe A. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (05) :1898-1906
[4]  
[Anonymous], 2005, The ITK Software Guide
[5]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[6]   BIOMETRIC STUDY OF THE DISK CUP IN OPEN-ANGLE GLAUCOMA [J].
BETZ, P ;
CAMPS, F ;
COLLIGNONBRACH, J ;
LAVERGNE, G ;
WEEKERS, R .
GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 1982, 218 (02) :70-74
[7]  
Blanco M, 2006, LECT NOTES COMPUT SC, V4029, P712, DOI 10.1007/11785231_74
[8]  
BLEDSOE WW, 1966, PRI15
[9]  
Bock R, 2007, LECT NOTES COMPUT SC, V4713, P355
[10]   Glaucoma detection with the Heidelberg retina tomograph 3 [J].
Burgansky-Eliash, Zvia ;
Wollstein, Gadi ;
Bilonick, Richard A. ;
Ishikawa, Hiroshi ;
Kagemann, Larry ;
Schuman, Joel S. .
OPHTHALMOLOGY, 2007, 114 (03) :466-471