Engineering optimization with particle swarm

被引:236
作者
Hu, XH [1 ]
Eberhart, RC [1 ]
Shi, YH [1 ]
机构
[1] Purdue Univ, Dept Biomed Engn, W Lafayette, IN 47907 USA
来源
PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03) | 2003年
关键词
D O I
10.1109/SIS.2003.1202247
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a modified particle swarm optimization (PSO) algorithm for engineering optimization problems with constraints. PSO is started with a group of feasible solutions and a feasibility function is used to check if the newly explored solutions satisfy all the constraints. All the particles keep only those feasible solutions in their memory. Several engineering design optimization problems were tested and the results show that PSO is an efficient and general approach to solve most nonlinear optimization problems with inequity constraints.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 14 条
[1]  
[Anonymous], P EUR INT S COMP INT
[2]  
Arora J., 2004, Introduction to Optimum Design
[3]   Use of a self-adaptive penalty approach for engineering optimization problems [J].
Coello, CAC .
COMPUTERS IN INDUSTRY, 2000, 41 (02) :113-127
[4]   OPTIMAL-DESIGN OF A WELDED BEAM VIA GENETIC ALGORITHMS [J].
DEB, K .
AIAA JOURNAL, 1991, 29 (11) :2013-2015
[5]  
Deb K, 1997, Evolut Algorithm Eng Appl, P497, DOI [10.1007/978-3-662-03423-1_27, DOI 10.1007/978-3-662-03423-1_27, https://doi.org/10.1007/978-3-662-03423-1_27]
[6]  
Eberhart R, 1995, MHS 95 P 6 INT S MIC, P39, DOI 10.1109/MHS.1995.494215
[7]  
Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P94, DOI 10.1109/CEC.2001.934376
[8]   CONSTRAINED OPTIMIZATION VIA GENETIC ALGORITHMS [J].
HOMAIFAR, A ;
QI, CX ;
LAI, SH .
SIMULATION, 1994, 62 (04) :242-253
[9]  
HU X, 2002, P 6 WORLD MULT SYST
[10]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968