High-resolution nonoscillatory central schemes for Hamilton-Jacobi equations

被引:69
作者
Lin, CT [1 ]
Tadmor, E
机构
[1] Providence Univ, Dept Appl Math, Shalu 43301, Taiwan
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Acad Sinica, Taipei 115, Taiwan
关键词
central schemes; Hamilton Jacobi equations; high resolution; convergence rate;
D O I
10.1137/S1064827598344856
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct second-order central schemes for multidimensional Hamilton Jacobi equations and we show that they are nonoscillatory in the sense of satisfying the maximum principle. Thus, these schemes provide the rst examples of nonoscillatory second-order Godunov-type schemes based on global projection operators. Numerical experiments are performed; L-1/L-infinity-errors and convergence rates are calculated. For convex Hamiltonians, numerical evidence con rms that our central schemes converge with second-order rates, when measured in the L-1-norm advocated in our recent paper [Numer. Math, to appear]. The standard L-infinity-norm, however, fails to detect this second-order rate.
引用
收藏
页码:2163 / 2186
页数:24
相关论文
共 32 条
[1]  
Abgrall R, 1996, COMMUN PUR APPL MATH, V49, P1339, DOI 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 1994, SOLUTION VISCOSITE E
[4]  
Bardi M., 1997, LECT NOTES MATH, V1660
[5]   THE DISCRETE ONE-SIDED LIPSCHITZ CONDITION FOR CONVEX SCALAR CONSERVATION-LAWS [J].
BRENIER, Y ;
OSHER, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (01) :8-23
[6]  
CORRIAS L, 1995, MATH COMPUT, V64, P555, DOI 10.1090/S0025-5718-1995-1265013-5
[7]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[8]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[9]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[10]  
HARTEN A., 1987, SIAM J NUMER ANAL, V24, P229