A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut

被引:73
作者
Palackal, Nisha
Lyon, Christopher S.
Zaidi, Seema
Luginbuhl, Peter
Dupree, Paul
Goubet, Florence
Macomber, John L.
Short, Jay M.
Hazlewood, Geoffrey P.
Robertson, Dan E.
Steer, Brian A.
机构
[1] Diversa Corp, San Diego, CA 92121 USA
[2] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England
基金
英国生物技术与生命科学研究理事会;
关键词
metagenomics; environmental DNA; glucanase; mannanase; xylanase; multidomain;
D O I
10.1007/s00253-006-0645-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A unique multifunctional glycosyl hydrolase was discovered by screening an environmental DNA library prepared from a microbial consortium collected from cow rumen. The protein consists of two adjacent catalytic domains. Sequence analysis predicted that one domain conforms to glycosyl hydrolase family 5 and the other to family 26. The enzyme is active on several different beta-linked substrates and possesses mannanase, xylanase, and glucanase activities. Site-directed mutagenesis studies on the catalytic residues confirmed the presence of two functionally independent catalytic domains. Using site-specific mutations, it was shown that one catalytic site hydrolyzes beta-1,4-linked mannan substrates, while the second catalytic site hydrolyzes beta-1,4-linked xylan and beta-1,4-linked glucan substrates. Polysaccharide Analysis using Carbohydrate gel Electrophoresis (PACE) also confirmed that the enzyme has discrete domains for binding and hydrolysis of glucan- and mannan-linked polysaccharides. Such multifunctional enzymes have many potential industrial applications in plant processing, including biomass saccharification, animal feed nutritional enhancement, textile, and pulp and paper processing.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 56 条
[1]   Microbial xylanases and their industrial applications: a review [J].
Beg, QK ;
Kapoor, M ;
Mahajan, L ;
Hoondal, GS .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2001, 56 (3-4) :326-338
[2]   Cellulose degrading enzymes and their potential industrial applications [J].
Bhat, MK ;
Bhat, S .
BIOTECHNOLOGY ADVANCES, 1997, 15 (3-4) :583-620
[3]   Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ [J].
Blum, DL ;
Kataeva, IA ;
Li, XL ;
Ljungdahl, LG .
JOURNAL OF BACTERIOLOGY, 2000, 182 (05) :1346-1351
[4]   X4 modules represent a new family of carbohydrate-binding modules that display novel properties [J].
Bolam, DN ;
Xie, HF ;
Pell, G ;
Hogg, D ;
Galbraith, G ;
Henrissat, B ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (22) :22953-22963
[5]   Mannanase A from Pseudomonas fluorescens ssp cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues [J].
Bolam, DN ;
Hughes, N ;
Virden, R ;
Lakey, JH ;
Hazlewood, GP ;
Henrissat, B ;
Braithwaite, KL ;
Gilbert, HJ .
BIOCHEMISTRY, 1996, 35 (50) :16195-16204
[6]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781
[7]   Glycoside hydrolases and glycosyltransferases: families and functional modules [J].
Bourne, Y ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (05) :593-600
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   Unusual microbial xylanases from insect guts [J].
Brennan, Y ;
Callen, WN ;
Christoffersen, L ;
Dupree, P ;
Goubet, F ;
Healey, S ;
Hernández, M ;
Keller, M ;
Li, K ;
Palackal, N ;
Sittenfeld, A ;
Tamayo, G ;
Wells, S ;
Hazlewood, GP ;
Mathur, EJ ;
Short, JM ;
Robertson, DE ;
Steer, BA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (06) :3609-3617
[10]   Structure of the oligomers obtained by enzymatic hydrolysis of the glucomannan produced by the plant Amorphophallus konjac [J].
Cescutti, P ;
Campa, C ;
Delben, F ;
Rizzo, R .
CARBOHYDRATE RESEARCH, 2002, 337 (24) :2505-2511