Salicylic acid has a role in regulating gene expression during leaf senescence

被引:382
作者
Morris, K
Mackerness, SAH
Page, T
John, CF
Murphy, AM
Carr, JP
Buchanan-Wollaston, V [1 ]
机构
[1] Hort Res Int, Dept Plant Genet & Biotechnol, Wellesbourne CV35 9EF, Warwick, England
[2] Univ Cambridge, Dept Plant Sci, Cambridge CB2 3EA, England
关键词
Arabidopsis; leaf senescence; signalling factors; gene expression; salicylic acid; cell death;
D O I
10.1046/j.1365-313x.2000.00836.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Leaf senescence is a complex process that is controlled by multiple developmental and environmental signals and is manifested by induced expression of a large number of different genes. In this paper we describe experiments that show, for the first time, that the salicylic acid (SA)-signalling pathway has a role in the control of gene expression during developmental senescence. Arabidopsis plants defective in the SA-signalling pathway (npr1 and pad4 mutants and NahG transgenic plants) were used to investigate senescence-enhanced gene expression, and a number of genes showed altered expression patterns. Senescence-induced expression of the cysteine protease gene SAG12, for example, was conditional on the presence of SA, together with another unidentified senescence-specific factor. Changes in gene expression patterns were accompanied by a delayed yellowing and reduced necrosis in the mutant plants defective in SA-signalling, suggesting a role for SA in the cell death that occurs at the final stage of senescence. We propose the presence of a minimum of three senescence-enhanced signalling factors in senescing leaves, one of which is SA. We also suggest that a combination of signalling factors is required for the optimum expression of many genes during senescence.
引用
收藏
页码:677 / 685
页数:9
相关论文
共 46 条
[1]   The molecular biology of leaf senescence [J].
BuchananWollaston, V .
JOURNAL OF EXPERIMENTAL BOTANY, 1997, 48 (307) :181-199
[2]   Leaf senescence in Brassica napus: Cloning of senescence related genes by subtractive hybridisation [J].
BuchananWollaston, V ;
Ainsworth, C .
PLANT MOLECULAR BIOLOGY, 1997, 33 (05) :821-834
[3]   ISOLATION OF CDNA CLONES FOR GENES THAT ARE EXPRESSED DURING LEAF SENESCENCE IN BRASSICA-NAPUS - IDENTIFICATION OF A GENE ENCODING A SENESCENCE-SPECIFIC METALLOTHIONEIN-LIKE PROTEIN [J].
BUCHANANWOLLASTON, V .
PLANT PHYSIOLOGY, 1994, 105 (03) :839-846
[4]   Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae [J].
Butt, A ;
Mousley, C ;
Morris, K ;
Beynon, J ;
Can, C ;
Holub, E ;
Greenberg, JT ;
Buchanan-Wollaston, V .
PLANT JOURNAL, 1998, 16 (02) :209-221
[5]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[6]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[7]   Caspases and programmed cell death in the hypersensitive response of plants to pathogens [J].
del Pozo, O ;
Lam, E .
CURRENT BIOLOGY, 1998, 8 (20) :1129-1132
[8]   The arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors [J].
Després, C ;
DeLong, C ;
Glaze, S ;
Liu, E ;
Fobert, PR .
PLANT CELL, 2000, 12 (02) :279-290
[9]   NITROGEN-METABOLISM IN SENESCING LEAVES [J].
FELLER, U ;
FISCHER, A .
CRITICAL REVIEWS IN PLANT SCIENCES, 1994, 13 (03) :241-273
[10]   REQUIREMENT OF SALICYLIC-ACID FOR THE INDUCTION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
GAFFNEY, T ;
FRIEDRICH, L ;
VERNOOIJ, B ;
NEGROTTO, D ;
NYE, G ;
UKNES, S ;
WARD, E ;
KESSMANN, H ;
RYALS, J .
SCIENCE, 1993, 261 (5122) :754-756