Investigation of the Interfacial Binding between Single-Walled Carbon Nanotubes and Heterocyclic Conjugated Polymers

被引:69
作者
Foroutan, Masumeh [1 ]
Nasrabadi, Amir Taghavi [1 ]
机构
[1] Univ Tehran, Dept Phys Chem, Sch Chem, Coll Sci, Tehran, Iran
关键词
BLOCK LENGTH DISTRIBUTION; MOLECULAR-DYNAMICS; MULTIBLOCK COPOLYMERS; LOAD-TRANSFER; COMPOSITES; NANOCOMPOSITES; SIMULATION; MECHANICS; FUNCTIONALIZATION; DEFORMATION;
D O I
10.1021/jp100960u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics (MD) simulations were performed to investigate the interfacial binding between the single-walled carbon nanotubes (SWCNTs) and conjugated polymers including polythiophene (PT), polypyrrole (PP), poly(2,6-pyridinylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) (PPyPV), and poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) (PmPV). The intermolecular interaction energy between SWCNTs and polymer molecules was computed, and the morphology of polymers physisorbed to the surface of nanotubes was investigated by the radius of gyration (R-g) and the alignment angle (theta). The influence of nanotube radius and temperature on the interfacial adhesion of nanotube-polymer and R-g of polymers was explored more. Our simulation results showed that the strongest interaction between the SWCNTs and these conjugated polymers was observed, first for PT, then PPy and PmPV, and finally PPyPV. Furthermore, we compared our results to the work by Yang and his co-workers (J. Phys. Chem. B 2005, 109, 10009). Our results show that the intermolecular interaction in our systems is strongly influenced by the specific monomer structure of polymer and nanotube radius, but the influence of temperature could be negligible. The high values of intermolecular interaction energy of such composites suggest to us that an efficient load transfer will exist in the interface between nanotube and heterocyclic conjugated polymer, which is of a key role in the composite reinforcement practical applications.
引用
收藏
页码:5320 / 5326
页数:7
相关论文
共 54 条
[1]   Polymer-nanotube composites: Burying nanotubes improves their field emission properties [J].
Alexandrou, I ;
Kymakis, E ;
Amaratunga, GAJ .
APPLIED PHYSICS LETTERS, 2002, 80 (08) :1435-1437
[2]  
Allen M. P., 1987, COMPUTER SIMULATION
[3]   MOLECULAR MECHANICS - THE MM3 FORCE-FIELD FOR HYDROCARBONS .1. [J].
ALLINGER, NL ;
YUH, YH ;
LII, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (23) :8551-8566
[4]   Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites [J].
An, KH ;
Jeong, SY ;
Hwang, HR ;
Lee, YH .
ADVANCED MATERIALS, 2004, 16 (12) :1005-+
[5]   Carbon nanotube polymer composites [J].
Andrews, R ;
Weisenberger, MC .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (01) :31-37
[6]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[7]   Deformation of carbon nanotubes in nanotube-polymer composites [J].
Bower, C ;
Rosen, R ;
Jin, L ;
Han, J ;
Zhou, O .
APPLIED PHYSICS LETTERS, 1999, 74 (22) :3317-3319
[8]   Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors [J].
Callegari, A ;
Cosnier, S ;
Marcaccio, M ;
Paolucci, D ;
Paolucci, F ;
Georgakilas, V ;
Tagmatarchis, N ;
Vázquez, E ;
Prato, M .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (05) :807-810
[9]   Influence of Nanotube Chirality, Temperature, and Chemical Modification on the Interfacial Bonding between Carbon Nanotubes and Polyphenylacetylene [J].
Chen, Huijuan ;
Xue, Qingzhong ;
Zheng, Qingbin ;
Xie, Jie ;
Yan, Keyou .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (42) :16514-16520
[10]   Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers [J].
Chen, J ;
Liu, HY ;
Weimer, WA ;
Halls, MD ;
Waldeck, DH ;
Walker, GC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (31) :9034-9035