Determining the three-phase coexistence line in methane hydrates using computer simulations

被引:226
作者
Conde, M. M. [1 ]
Vega, C. [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Fis 1, E-28040 Madrid, Spain
关键词
Lennard-Jones potential; molecular dynamics method; organic compounds; phase diagrams; water; MOLECULAR-DYNAMICS SIMULATIONS; HETEROGENEOUS CRYSTAL-GROWTH; GAS-HYDRATE; PHASE-EQUILIBRIA; LIQUID WATER; THERMOPHYSICAL PROPERTIES; TEMPERATURE-DEPENDENCE; THERMAL EXPANSIVITY; POTENTIAL FUNCTIONS; FREE-ENERGY;
D O I
10.1063/1.3466751
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations have been performed to estimate the three-phase (solid hydrate-liquid water-gaseous methane) coexistence line for the water-methane binary mixture. The temperature at which the three phases are in equilibrium was determined for three different pressures, namely, 40, 100, and 400 bar by using direct coexistence simulations. In the simulations water was described by using either TIP4P, TIP4P/2005, or TIP4P/Ice models and methane was described as simple Lennard-Jones interaction site. Lorentz-Berthelot combining rules were used to obtain the parameters of the cross interactions. For the TIP4P/2005 model positive deviations from the energetic Lorentz-Berthelot rule were also considered to indirectly account for the polarization of methane when introduced in liquid water. To locate the three-phase coexistence point, two different global compositions were used, which yielded (to within statistical uncertainty) the same predictions for the three-phase coexistence temperatures, although with a somewhat different time evolution. The three-phase coexistence temperatures obtained at different pressures when using the TIP4P/Ice model of water were in agreement with the experimental results. The main reason for this is that the TIP4P/Ice model reproduces the melting point of ice I-h. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466751]
引用
收藏
页数:12
相关论文
共 146 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   A potential model for the study of ices and amorphous water:: TIP4P/Ice -: art. no. 234511 [J].
Abascal, JLF ;
Sanz, E ;
Fernández, RG ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (23)
[3]  
Allen M. P., 2017, COMPUTER SIMULATION
[4]   Application of the cell potential method to predict phase equilibria of multicomponent gas hydrate systems [J].
Anderson, BJ ;
Bazant, MZ ;
Tester, JW ;
Trout, BL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (16) :8153-8163
[5]   The shear viscosity of rigid water models [J].
Angel Gonzalez, Miguel ;
Abascal, Jose L. F. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (09)
[6]   The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase [J].
Aragones, J. L. ;
Conde, M. M. ;
Noya, E. G. ;
Vega, C. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (03) :543-555
[7]   Assessing the thermodynamic signatures of hydrophobic hydration for several common water models [J].
Ashbaugh, Henry S. ;
Collett, Nicholas J. ;
Hatch, Harold W. ;
Staton, Jennifer A. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (12)
[8]  
Aya I., 1991, P 1 INT OFFSHORE POL, P427
[9]   COMPUTER-SIMULATION OF THE CRYSTAL-GROWTH AND DISSOLUTION OF NATURAL-GAS HYDRATES [J].
BAEZ, LA ;
CLANCY, P .
INTERNATIONAL CONFERENCE ON NATURAL GAS HYDRATES, 1994, 715 :177-186
[10]  
Berendsen H.J.C., 1984, PROC NATO ADV STUDY, V1984, P475