Approximation algorithms for maximum dispersion

被引:112
作者
Hassin, R
Rubinstein, S
Tamir, A
机构
[1] Dept. of Stat. and Operations Res., School of Mathematical Sciences, Tel-Aviv University, Ramat Aviv
关键词
approximation algorithms; maximum dispersion; facility location;
D O I
10.1016/S0167-6377(97)00034-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We describe approximation algorithms with bounded performance guarantees for the following problem: A graph is given with edge weights satisfying the triangle inequality, together with two numbers k and p. Find k disjoint subsets of p vertices each, so that the total weight of edges within subsets is maximized. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 12 条
  • [1] [Anonymous], 1996, LNCS
  • [2] BLUM M, 1972, J COMPUT SYST SCI, V7, P448
  • [3] CHANDRA B, 1996, LECT NOTES COMPUTER, V1097, P53
  • [4] A CLASS OF BOUNDED APPROXIMATION ALGORITHMS FOR GRAPH PARTITIONING
    FEO, TA
    KHELLAF, M
    [J]. NETWORKS, 1990, 20 (02) : 181 - 195
  • [5] GABOW HN, 1990, 1ST P ANN ACM SIAM S, P434
  • [6] GABOW HN, 1975, J ACM, V23, P221
  • [7] Computational aspects of the maximum diversity problem
    Ghosh, JB
    [J]. OPERATIONS RESEARCH LETTERS, 1996, 19 (04) : 175 - 181
  • [8] Korte B, 1978, ANN DISCRETE MATH, V2, P65, DOI [10.1016/S0167-5060(08)70322-4, DOI 10.1016/S0167-5060(08)70322-4]
  • [9] KORTSARZ G, 1993, AN S FDN CO, P692
  • [10] HEURISTIC AND SPECIAL CASE ALGORITHMS FOR DISPERSION PROBLEMS
    RAVI, SS
    ROSENKRANTZ, DJ
    TAYI, GK
    [J]. OPERATIONS RESEARCH, 1994, 42 (02) : 299 - 310