FT-IR spectroscopic characterization of NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli:: Oxidation of FeS cluster N2 is coupled with the protonation of an aspartate or glutamate side chains

被引:87
作者
Hellwig, P
Scheide, D
Bungert, S
Mäntele, W
Friedrich, T
机构
[1] Univ Dusseldorf, Inst Biochem, D-40225 Dusseldorf, Germany
[2] Goethe Univ Frankfurt, Inst Biophys, D-60590 Frankfurt, Germany
关键词
D O I
10.1021/bi000842a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, is the first energy-transducing complex of many respiratory chains. It couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. One FMN and up to nine iron-sulfur (FeS) clusters participate in the redox reaction. So far, complex I has been described mainly by means of EPR- and UV-vis spectroscopy. Here, we report for the first time an infrared spectroscopic characterization of complex I. Electrochemically induced FT-IR difference spectra of complex I from Escherichia coli and of the NADH dehydrogenase fragment of this complex were obtained for critical potential steps. The spectral contributions of the FMN in both preparations were derived from a comparison using model compounds and turned out to be unexpectedly small. Furthermore, the FT-IR difference spectra reveal that the redox transitions of the FMN and of the FeS clusters induce strong reorganizations of the polypeptide backbone. Additional signals in the spectra of complex I reflect contributions induced by the redox transition of the high-potential FeS cluster N2 which is not present in the NADH dehydrogenase fragment. Part of these signals are attributed to the reorganization of protonated/deprotonated Asp or Glu side chains. On the basis of these data we discuss the role of N2 for proton translocation of complex I.
引用
收藏
页码:10884 / 10891
页数:8
相关论文
共 47 条
[1]   QUANTITATIVE STUDIES OF THE STRUCTURE OF PROTEINS IN SOLUTION BY FOURIER-TRANSFORM INFRARED-SPECTROSCOPY [J].
ARRONDO, JLR ;
MUGA, A ;
CASTRESANA, J ;
GONI, FM .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1993, 59 (01) :23-56
[2]   Electrochemical and spectroscopic investigations of the cytochrome bc1 complex from Rhodobacter capsulatus [J].
Baymann, F ;
Robertson, DE ;
Dutton, PL ;
Mäntele, W .
BIOCHEMISTRY, 1999, 38 (40) :13188-13199
[4]   CATALYTIC SECTOR OF COMPLEX-I (NADH-UBIQUINONE OXIDOREDUCTASE) - SUBUNIT STOICHIOMETRY AND SUBSTRATE-INDUCED CONFORMATION CHANGES [J].
BELOGRUDOV, G ;
HATEFI, Y .
BIOCHEMISTRY, 1994, 33 (15) :4571-4576
[5]   PROTON TRANSLOCATION COUPLED TO THE OXIDATION OF CARBON-MONOXIDE TO CO2 AND H-2 IN METHANOSARCINA-BARKERI [J].
BOTT, M ;
THAUER, RK .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 179 (02) :469-472
[6]   Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction [J].
Brandt, U .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1997, 1318 (1-2) :79-91
[7]   Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli [J].
Braun, M ;
Bungert, S ;
Friedrich, T .
BIOCHEMISTRY, 1998, 37 (07) :1861-1867
[8]   One-step purification of the NADH dehydrogenase fragment of the Escherichia coli complex I by means of Strep-tag affinity chromatography [J].
Bungert, S ;
Krafft, B ;
Schlesinger, R ;
Friedrich, T .
FEBS LETTERS, 1999, 460 (02) :207-211
[9]  
CROUSE BR, 1994, J BIOL CHEM, V269, P21030
[10]   HUMAN FERROCHELATASE IS AN IRON-SULFUR PROTEIN [J].
DAILEY, HA ;
FINNEGAN, MG ;
JOHNSON, MK .
BIOCHEMISTRY, 1994, 33 (02) :403-407