Wave solutions for a discrete reaction-diffusion equation

被引:32
作者
Carpio, A [1 ]
Chapman, SJ
Hastings, S
McLeod, JB
机构
[1] Univ Complutense Madrid, Dept Appl Math, Madrid, Spain
[2] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
D O I
10.1017/S0956792599004222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by models from fracture mechanics and from biology, we study the infinite system of differential equations u'(n) = u(n-1) - 2u(n) + u(n+1) - A sin u(n) + F, ' = d/dt, where A and F are positive parameters. For fixed A > 0 we show that there are monotone travelling waves for F in an interval F-crit < F < A, and we are able to give a rigorous upper bound for F-crit, in contrast to previous work on similar problems. We raise the problem of characterizing those nonlinearities (apparently the more common) for which F-crit > 0. We show that, for the sine nonlinearity, this is true if A > 2. (Our method yields better estimates than this, but does not include all A > 0.) We also consider the existence and multiplicity of time independent solutions when \F\ < F-crit.
引用
收藏
页码:399 / 412
页数:14
相关论文
共 11 条
[1]  
BELL J, 1984, Q APPL MATH, V42, P1
[2]   PROPAGATING WAVES IN DISCRETE BISTABLE REACTION-DIFFUSION SYSTEMS [J].
ERNEUX, T ;
NICOLIS, G .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 67 (1-3) :237-244
[3]  
FRENKEL J, 1938, PHYS Z SOWJETUNION, V13, P1
[4]  
Hankerson D., 1993, Journal of Dynamics and Differential Equations, V5, P359, DOI 10.1007/BF01053165
[5]  
HASTINGS SP, UNPUB
[7]  
KING JR, ASYMPTOTICS ALL ORDE
[8]  
MALLETPARET J, 1997, GLOBAL STRUCTURE TRA
[9]  
Walter W., 1970, ERGEBNISSE MATH IHRE, V55
[10]   STABILITY OF TRAVELING WAVE-FRONTS FOR THE DISCRETE NAGUMO EQUATION [J].
ZINNER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) :1016-1020