Enhanced electrochemical properties of LiFePO4 cathode material by CuO and carbon co-coating

被引:105
作者
Cui, Yan [1 ]
Zhao, Xiaoli [1 ]
Guo, Ruisong [1 ]
机构
[1] Tianjin Univ, Minist Educ, Key Lab Adv Ceram & Machining Technol, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion batteries; LiFePO4; CuO coating; Cycle stability; PERFORMANCE; LICOO2; STABILITY; MGO;
D O I
10.1016/j.jallcom.2009.09.165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CuO and carbon co-coated LiFePO4 composites were prepared by a chemical precipitation method. The incomplete carbon network is repaired by the nano-sized CuO as proved by high-resolution transmission electron microscopy. The effects of the co-coating of CuO and carbon on the cycle performance of LiFePO4 cathode are investigated. It is found that the co-coating reduces the capacity fading especially at high charge/discharge rates. Results of the impedance spectroscopy and cyclic voltammograrn measurements indicate that the interfacial resistances decrease remarkably and the polarization of the cathode is reduced significantly. This can be mainly attributed to the improvement of electrochemical kinetics by the co-coating with nano-sized CuO and carbon. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 240
页数:5
相关论文
共 29 条
[1]   Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :A53-A55
[2]   Versatile synthesis of carbon-rich LiFePO4 enhancing its electrochemical properties [J].
Bauer, EM ;
Bellitto, C ;
Pasquali, M ;
Prosini, PP ;
Righini, G .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (04) :A85-A87
[3]   Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries [J].
Chang, Hao-Hsun ;
Chang, Chun-Chih ;
Su, Ching-Yi ;
Wu, Hung-Chun ;
Yang, Mo-Hua ;
Wu, Nae-Lih .
JOURNAL OF POWER SOURCES, 2008, 185 (01) :466-472
[4]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[5]   LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase [J].
Cho, J ;
Kim, YJ ;
Park, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1110-A1115
[6]  
Cho J, 2001, ANGEW CHEM INT EDIT, V40, P3367, DOI 10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO
[7]  
2-A
[8]   Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell [J].
Cho, J ;
Kim, YJ ;
Park, B .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3788-3791
[9]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069
[10]   High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-ditertbutyl-1,4-dimethoxybenzene [J].
Dahn, JR ;
Jiang, JW ;
Moshurchak, LM ;
Fleischauer, MD ;
Buhrmester, C ;
Krause, LJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (06) :A1283-A1289