The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations

被引:296
作者
Berg, J. Michael [1 ]
Romoser, Amelia [1 ]
Banerjee, Nivedita [1 ]
Zebda, Rema [1 ]
Sayes, Christie M. [1 ]
机构
[1] Texas A&M Univ, Dept Vet Physiol & Pharmacol, College Stn, TX 77843 USA
关键词
Metal oxide nanoparticles; zeta potential; agglomeration; pH; cellular viability; OXIDATIVE STRESS; CARBON-BLACK; TOXICITY; FORCES; NANOMATERIALS; INTERPARTICLE; BRAIN; IRON;
D O I
10.3109/17435390903276941
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Zeta potential measurements are common in nanotoxicology. This research probes the effects of pH and time on nanoparticle zeta potential, agglomerate size, and cellular viability. The nanoparticles TiO2, Fe2O3, Al2O3, ZnO, and CeO2, were titrated from pH 12.0-2.0. The isoelectric points (IEP) of the nanoparticles were near neutral with the exception of TiO2 (IEP = 5.19) and Fe2O3 (IEP = 4.24). Nanoparticle agglomerates were largest at the IEP. TiO2 and Fe2O3 increased in zeta potential and agglomerate size over time; while Al2O3 and ZnO displayed little change. CeO2 increased in zeta potential; however, the net charge remained negative. Cytotoxicity studies revealed that TiO2 and Fe2O3 caused decreasing cellular viability over 48 h. Al2O3, ZnO, and CeO2 cellular viability remained similar to control. Results indicate that alterations in the pH have a large effect on zeta potential and agglomerate size which may be used as a predictive measure of nanotoxicity.
引用
收藏
页码:276 / 283
页数:8
相关论文
共 26 条
[1]   Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer [J].
Al-Jamal, Wafa T. ;
Al-Jamal, Khuloud T. ;
Bomans, Paul H. ;
Frederik, Peter M. ;
Kostarelos, Kostas .
SMALL, 2008, 4 (09) :1406-1415
[2]   Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system [J].
Beak, DG ;
Basta, NT ;
Scheckel, KG ;
Traina, SJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (04) :1364-1370
[3]   Interfacial approach to aluminum toxicity:: Interactions of Al(III) and Pr(III) with model phospholipid bilayer and monolayer membranes [J].
Caël, V ;
Van der Heyden, A ;
Champmartin, D ;
Barzyk, W ;
Rubini, P ;
Rogalska, E .
LANGMUIR, 2003, 19 (21) :8697-8708
[4]   Uptake Mechanism of Oppositely Charged Fluorescent Nanoparticles in HeLa Cells [J].
Dausend, Julia ;
Musyanovych, Anna ;
Dass, Martin ;
Walther, Paul ;
Schrezenmeier, Hubert ;
Landfester, Katharina ;
Mailaender, Volker .
MACROMOLECULAR BIOSCIENCE, 2008, 8 (12) :1135-1143
[5]   Molecular dynamics simulation of the forces between colloidal nanoparticles in Lennard-Jones and n-decane solvent [J].
Fichthorn, Kristen A. ;
Qin, Yong .
GRANULAR MATTER, 2008, 10 (02) :105-111
[6]   Investigation of the Presence of Inorganic Micro- and Nanosized Contaminants in Bread and Biscuits by Environmental Scanning Electron Microscopy [J].
Gatti, Antonietta M. ;
Tossini, Daniela ;
Gambarelli, Andrea ;
Montanari, Stefano ;
Capitani, Federico .
CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2009, 49 (03) :275-282
[7]   Gas-phase flame synthesis and characterization of iron oxide nanoparticles for use in a health effects study [J].
Guo, Bing ;
Kennedy, Ian M. .
AEROSOL SCIENCE AND TECHNOLOGY, 2007, 41 (10) :944-951
[8]   Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells [J].
Guo, Bing ;
Zebda, Rema ;
Drake, Stephen J. ;
Sayes, Christie M. .
PARTICLE AND FIBRE TOXICOLOGY, 2009, 6
[9]   Modification of interparticle forces for nanoparticles using atomic layer deposition [J].
Hakim, L. F. ;
Blackson, J. H. ;
Weimer, A. W. .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (22) :6199-6211
[10]   The ecotoxicology and chemistry of manufactured nanoparticles [J].
Handy, Richard D. ;
von der Kammer, Frank ;
Lead, Jamie R. ;
Hassellov, Martin ;
Owen, Richard ;
Crane, Mark .
ECOTOXICOLOGY, 2008, 17 (04) :287-314