Bi-instability and the global role of unstable resonant orbits in a driven laser

被引:32
作者
Carr, TW [1 ]
Billings, L
Schwartz, IB
Triandaf, I
机构
[1] So Methodist Univ, Dept Math, Dallas, TX 75275 USA
[2] USN, Res Lab, Div Plasma Phys, Special Project Nonlinear Sci, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
resonance; chaos; heteroclinic; saddle-bifurcations; bi-instability;
D O I
10.1016/S0167-2789(00)00164-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Driven class-B lasers are devices which possess quadratic nonlinearities and are known to exhibit chaotic behavior. We describe the onset of global heteroclinic connections which give rise to chaotic saddles. These form the precursor topology which creates both localized homoclinic chaos, as well as global mixed-mode heteroclinic chaos. To locate the relevant periodic orbits creating the precursor topology, approximate maps are derived using matched asymptotic expansions and subharmonic Melnikov theory. Locating the relevant unstable fixed points of the maps provides an organizing framework to understand the global dynamics and chaos exhibited by the laser. (C) 2000 Published by Elsevier Science B.V.
引用
收藏
页码:59 / 82
页数:24
相关论文
共 32 条
[1]  
ABRAHAM NB, 1988, PROG OPTICS, V25, P3
[2]   DETERMINISTIC CHAOS IN LASER WITH INJECTED SIGNAL [J].
ARECCHI, FT ;
LIPPI, GL ;
PUCCIONI, GP ;
TREDICCE, JR .
OPTICS COMMUNICATIONS, 1984, 51 (05) :308-314
[3]  
Bender C.M., 1978, Advanced mathematical methods for scientists and engineers
[4]   Experimental observation of perturbation-induced intermittency in the dynamics of a loss-modulated CO2 laser [J].
Chizhevsky, VN ;
Corbalan, R .
PHYSICAL REVIEW E, 1996, 54 (05) :4576-4579
[5]   AN EXAMPLE OF BIFURCATION TO HOMOCLINIC ORBITS [J].
CHOW, SN ;
HALE, JK ;
MALLETPARET, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (03) :351-373
[6]   Global investigation of the influence of the phase of subharmonic excitation of a driven system [J].
Dangoisse, D ;
Celet, JC ;
Glorieux, P .
PHYSICAL REVIEW E, 1997, 56 (02) :1396-1406
[7]   CHAOS IN A CO2-LASER WITH MODULATED PARAMETERS - EXPERIMENTS AND NUMERICAL SIMULATIONS [J].
DANGOISSE, D ;
GLORIEUX, P ;
HENNEQUIN, D .
PHYSICAL REVIEW A, 1987, 36 (10) :4775-4791
[8]  
Epstein I. R., 1998, INTRO NONLINEAR CHEM
[9]   SUBHARMONIC BIFURCATION AND BISTABILITY OF PERIODIC-SOLUTIONS IN A PERIODICALLY MODULATED LASER [J].
ERNEUX, T ;
BAER, SM ;
MANDEL, P .
PHYSICAL REVIEW A, 1987, 35 (03) :1165-1171
[10]  
GILMORE R, 1998, TOPOLOGICAL ANAL CHA, V70