A genetic algorithm-based segmentation of Markov random field modeled images

被引:27
作者
Kim, EY [1 ]
Park, SH [1 ]
Kim, HJ [1 ]
机构
[1] Kyungpook Natl Univ, Dept Comp Engn, Taegu 702701, South Korea
关键词
distributed genetic algorithm; energy function; Markov random field (MRF);
D O I
10.1109/97.873564
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An unsupervised method is presented for segmenting video sequences degraded by noise. Each frame in a sequence is modeled using a Markov random field (MRF), and the energy function of each MRF is minimized by chromosomes that evolve using distributed genetic algorithms. To improve the computational efficiency, only unstable chromosomes corresponding to moving object parts are evolved. Experimental results show the effectiveness of the proposed method.
引用
收藏
页码:301 / 303
页数:3
相关论文
共 6 条
[1]   Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation [J].
Andrey, P ;
Tarroux, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :252-262
[2]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[3]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[4]   MRF model based image segmentation using hierarchical distributed genetic algorithm [J].
Kim, HJ ;
Kim, EY ;
Kim, JW ;
Park, SH .
ELECTRONICS LETTERS, 1998, 34 (25) :2394-2395
[5]   MULTIRESOLUTION COLOR IMAGE SEGMENTATION [J].
LIU, JQ ;
YANG, YH .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (07) :689-700
[6]   A REVIEW ON IMAGE SEGMENTATION TECHNIQUES [J].
PAL, NR ;
PAL, SK .
PATTERN RECOGNITION, 1993, 26 (09) :1277-1294