Random shearing by zonal flows and transport reduction

被引:20
作者
Kim, EJ [2 ]
Diamond, PH
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Univ Sheffield, Dept Appl Math, Sheffield S3 7RH, S Yorkshire, England
关键词
D O I
10.1063/1.1808455
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The physics of random shearing by zonal flows and the consequent reduction of scalar field transport are studied. In contrast to mean shear flows, zonal flows have a finite autocorrelation time and can exhibit complex spatial structure. A random zonal flow with a finite correlation time tau(ZF) decorrelates two nearby fluid elements less efficiently than a mean shear flow does. The decorrelation time is tau(D)=(tau(eta)/tau(ZF)Omega(rms)(2))(1/2) (tau(eta) is the turbulent scattering time, and Omega(rms) is the rms shear), leading to larger scalar field amplitude with a slightly different scaling (proportional totau(D)/Omega(rms)), as compared to the case of coherent shearing. In the strong shear limit, the flux scales as proportional toOmega(rms)(-1). (C) 2004 American Institute Physics.
引用
收藏
页码:L77 / L80
页数:4
相关论文
共 12 条
[1]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[3]   A MODEL OF MEAN ZONAL FLOWS IN THE MAJOR PLANETS [J].
BUSSE, FH .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1983, 23 (02) :153-174
[4]   Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation [J].
Diamond, PH ;
Champeaux, S ;
Malkov, M ;
Das, A ;
Gruzinov, I ;
Rosenbluth, MN ;
Holland, C ;
Wecht, B ;
Smolyakov, AI ;
Hinton, FL ;
Lin, Z ;
Hahm, TS .
NUCLEAR FUSION, 2001, 41 (08) :1067-1080
[5]  
DIAMOND PH, PLASMA PHYS CONTROLL
[6]  
Goldreich P., 1965, MNRAS, V130, P125, DOI [10.1093/mnras/130.2.125, DOI 10.1093/MNRAS/130.2.125]
[7]   Shearing rate of time-dependent E x B flow [J].
Hahm, TS ;
Beer, MA ;
Lin, Z ;
Hammett, GW ;
Lee, WW ;
Tang, WM .
PHYSICS OF PLASMAS, 1999, 6 (03) :922-926
[8]   Transport reduction by shear flows in dynamical models [J].
Kim, EJ ;
Diamond, PH ;
Hahm, TS .
PHYSICS OF PLASMAS, 2004, 11 (10) :4554-4558
[9]   Effect of mean flow shear on cross phase and transport reconsidered [J].
Kim, EJ ;
Diamond, PH .
PHYSICAL REVIEW LETTERS, 2003, 91 (07) :750011-750014
[10]   Effects of collisional zonal flow damping on turbulent transport [J].
Lin, Z ;
Hahm, TS ;
Lee, WW ;
Tang, WM ;
Diamond, PH .
PHYSICAL REVIEW LETTERS, 1999, 83 (18) :3645-3648