Stability of perturbed systems with time-varying delays

被引:65
作者
GoubetBartholomeus, A [1 ]
Dambrine, M [1 ]
Richard, JP [1 ]
机构
[1] ECOLE CENT LILLE, URA CNRS 1440, LAIL, F-59651 VILLENEUVE DASCQ, FRANCE
关键词
time-varying delay; perturbations; robust asymptotic stability; comparison principle; M-matrix; matrix measure;
D O I
10.1016/S0167-6911(97)00032-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper gives easily verifiable sufficient conditions of robust asymptotic stability of linear time-delay systems subject to parametric unstructured or highly-structured perturbations. The criteria given in this paper are delay-independent or delay-dependent. The considered delay may be time-varying. An estimation of the transient behaviour of the studied systems is also provided (exponential rate of convergence). Scalar or vectorial inequalities involving Hurwitz matrices, matrix measures and norms constitute the mathematical foundations of the exposed results. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 26 条
[1]  
[Anonymous], 1986, MATH SCI ENG
[2]  
CHEN J, 1994, P 33 IEEE C DEC CONT, P433
[3]  
DAMBRINE M, 1995, 34 IEEE C DEC CONTR, P2052
[4]  
Dambrine M., 1994, DYNAMIC SYSTEMS APPL, V3, P369
[5]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[6]  
Elsgolts L. E., 1973, MATH SCI ENG, V105
[7]  
Fiedler M., 1962, CZECH MATH J, V12, P382, DOI [10.21136/CMJ.1962.100526, DOI 10.21136/CMJ.1962.100526]
[8]  
Goubet A., 1995, IFAC Conference on System Structure and Control, P278
[9]  
Hale J., 1977, APPL MATH SCI, V3
[10]  
Horn R.A., 1991, TOPICS MATRIX ANAL