Photocross-linking of nascent chains to the STT3 subunit of the oligosaccharyltransferase complex

被引:112
作者
Nilsson, I
Kelleher, DJ
Miao, YW
Shao, YL
Kreibich, G
Gilmore, R
von Heijne, G
Johnson, AE
机构
[1] Texas A&M Univ, Syst Hlth Sci Ctr, Dept Med Biochem & Genet, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
[3] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[4] Univ Stockholm, Dept Biochem & Biophys, SE-10691 Stockholm, Sweden
[5] Univ Massachusetts, Sch Med, Dept Mol Pharmacol & Biochem, Worcester, MA 01655 USA
[6] NYU, Med Ctr, Dept Cell Biol, New York, NY 10016 USA
关键词
N glycosylation; oligosaccharyltransferase; STT3; photocross-linking; nascent protein chain;
D O I
10.1083/jcb.200301043
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In eukaryotic cells, polypeptides are N glycosylated after passing through the membrane of the ER into the ER lumen. This modification is effected cotranslationally by the multimeric oligosaccharyltransferase (OST) enzyme. Here, we report the first cross-linking of an OST subunit to a nascent chain that is undergoing translocation through, or integration into, the ER membrane. A photoreactive probe was incorporated into a nascent chain using a modified Lys-tRNA and was positioned in a cryptic glycosylation site (-Q-K-T- instead of -N-K-T-) in the nascent chain. When translocation intermediates with nascent chains of increasing length were irradiated, nascent chain photocross-linking to translocon components, Sec61alpha and TRAM, was replaced by efficient photocross-linking solely to a protein identified by immunoprecipitation as the STT3 subunit of the OST No cross-linking was observed in the absence of a cryptic sequence or in the presence of a competitive peptide substrate of the OST. As no significant nascent chain photocross-linking to other OST subunits was detected in these fully assembled translocation and integration intermediates, our results strongly indicate that the nascent chain portion of the OST active site is located in STT3.
引用
收藏
页码:715 / 725
页数:11
相关论文
共 40 条
[1]   Epoxyethylglycyl peptides as inhibitors of oligosaccharyltransferase: Double-labelling of the active site [J].
Bause, E ;
Wesemann, M ;
Bartoschek, A ;
Breuer, W .
BIOCHEMICAL JOURNAL, 1997, 322 :95-102
[3]   Investigation of the active site of oligosaccharyltransferase from pig liver using synthetic tripeptides as tools [J].
Bause, E ;
Breuer, W ;
Peters, S .
BIOCHEMICAL JOURNAL, 1995, 312 :979-985
[4]   The dolichol pathway of N-linked glycosylation [J].
Burda, P ;
Aebi, M .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1999, 1426 (02) :239-257
[5]   COTRANSLATIONAL FOLDING AND CALNEXIN BINDING DURING GLYCOPROTEIN-SYNTHESIS [J].
CHEN, W ;
HELENIUS, J ;
BRAAKMAN, I ;
HELENIUS, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6229-6233
[6]   SECRETORY PROTEINS MOVE THROUGH THE ENDOPLASMIC-RETICULUM MEMBRANE VIA AN AQUEOUS, GATED PORE [J].
CROWLEY, KS ;
LIAO, SR ;
WORRELL, VE ;
REINHART, GD ;
JOHNSON, AE .
CELL, 1994, 78 (03) :461-471
[7]   N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin [J].
Daniels, R ;
Kurowski, B ;
Johnson, AE ;
Hebert, DN .
MOLECULAR CELL, 2003, 11 (01) :79-90
[8]   The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process [J].
Do, H ;
Falcone, D ;
Lin, JL ;
Andrews, DW ;
Johnson, AE .
CELL, 1996, 85 (03) :369-378
[9]   Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum [J].
Fu, J ;
Kreibich, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (06) :3984-3990
[10]   SEQUENCE DIFFERENCES BETWEEN GLYCOSYLATED AND NONGLYCOSYLATED ASN-X-THR SER ACCEPTOR SITES - IMPLICATIONS FOR PROTEIN ENGINEERING [J].
GAVEL, Y ;
VONHEIJNE, G .
PROTEIN ENGINEERING, 1990, 3 (05) :433-442