Direct measurement of the transfer rate of chloroplast DNA into the nucleus

被引:224
作者
Huang, CY
Ayliffe, MA
Timmis, JN [1 ]
机构
[1] Univ Adelaide, Dept Mol Biosci, Adelaide, SA 5005, Australia
[2] CSIRO Plant Ind, Canberra, ACT 2601, Australia
基金
英国惠康基金; 英国生物技术与生命科学研究理事会; 澳大利亚研究理事会;
关键词
D O I
10.1038/nature01435
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene transfer from the chloroplast to the nucleus has occurred over evolutionary time(1). Functional gene establishment in the nucleus is rare, but DNA transfer without functionality is presumably more frequent. Here, we measured directly the transfer rate of chloroplast DNA (cpDNA) into the nucleus of tobacco plants (Nicotiana tabacum). To visualize this process, a nucleus-specific neomycin phosphotransferase gene (neoSTLS2) was integrated into the chloroplast genome, and the transfer of cpDNA to the nucleus was detected by screening for kanamycin-resistant seedlings in progeny. A screen for kanamycin-resistant seedlings was conducted with about 250,000 progeny produced by fertilization of wild-type females with pollen from plants containing cp-neoSTLS2. Sixteen plants of independent origin were identified and their progenies showed stable inheritance of neoSTLS2, characteristic of nuclear genes. Thus, we provide a quantitative estimate of one transposition event in about 16,000 pollen grains for the frequency of transfer of cpDNA to the nucleus. In addition to its evident role in organellar evolution, transposition of cpDNA to the nucleus in tobacco occurs at a rate that must have significant consequences for existing nuclear genes.
引用
收藏
页码:72 / 76
页数:6
相关论文
共 26 条
[1]   Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants [J].
Adams, KL ;
Daley, DO ;
Qiu, YL ;
Whelan, J ;
Palmer, JD .
NATURE, 2000, 408 (6810) :354-357
[2]   TOBACCO NUCLEAR-DNA CONTAINS LONG TRACTS OF HOMOLOGY TO CHLOROPLAST DNA [J].
AYLIFFE, MA ;
TIMMIS, JN .
THEORETICAL AND APPLIED GENETICS, 1992, 85 (2-3) :229-238
[3]   Efficient gene tagging in Arabidopsis thaliana using a gene trap approach [J].
Babiychuk, E ;
Fuanghthong, M ;
VanMontagu, M ;
Inze, D ;
Kushnir, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (23) :12722-12727
[4]   THE CAULIFLOWER MOSAIC VIRUS-35S PROMOTER - COMBINATORIAL REGULATION OF TRANSCRIPTION IN PLANTS [J].
BENFEY, PN ;
CHUA, NH .
SCIENCE, 1990, 250 (4983) :959-966
[5]   Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology [J].
Daniell, H ;
Khan, MS ;
Allison, L .
TRENDS IN PLANT SCIENCE, 2002, 7 (02) :84-91
[6]   Containment of herbicide resistance through genetic engineering of the chloroplast genome [J].
Daniell, H ;
Datta, R ;
Varma, S ;
Gray, S ;
Lee, SB .
NATURE BIOTECHNOLOGY, 1998, 16 (04) :345-348
[7]   ISOLATION AND CHARACTERIZATION OF A LIGHT-INDUCIBLE, ORGAN-SPECIFIC GENE FROM POTATO AND ANALYSIS OF ITS EXPRESSION AFTER TAGGING AND TRANSFER INTO TOBACCO AND POTATO SHOOTS [J].
ECKES, P ;
ROSAHL, S ;
SCHELL, J ;
WILLMITZER, L .
MOLECULAR & GENERAL GENETICS, 1986, 205 (01) :14-22
[8]   (Trans)gene silencing in plants: How many mechanisms? [J].
Fagard, M ;
Vaucheret, H .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 2000, 51 :167-194
[9]   THE ENDOSYMBIONT HYPOTHESIS REVISITED [J].
GRAY, MW .
INTERNATIONAL REVIEW OF CYTOLOGY-A SURVEY OF CELL BIOLOGY, 1992, 141 :233-357
[10]  
Horser C, 2002, GENET ENG P, V24, P239