Mammalian target of rapamycin

被引:26
作者
Meric-Bernstam, F [1 ]
Mills, GB [1 ]
机构
[1] Univ Texas, MD Anderson Canc Ctr, Houston, TX 77030 USA
关键词
D O I
10.1053/j.seminoncol.2004.10.013
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Targeted molecular therapeutics are tailored toward the genetic abnormalities that cause tumor progression. Modulation of certain signaling pathways that are aberrant in cancer cells has the potential to provide an effective, nontoxic approach to therapy in a broad range of cancers. Agents targeting BCR-ABL (imatinib mesylate [formerly known as STI-571], Gleevec; Novartis Pharmaceuticals Corp, East Hanover, NJ), retinoid receptor fusion proteins (all-trans retinoic acid), ErbB-2 or HER2/neu (trastuzumab, Herceptin; Genentech, Inc, South San Francisco, CA), epidermal growth factor receptor (IMC-C225 and ZD1839), and the phosphatidylinositol 3-kinase pathway (CCI-779) have all induced remarkable, nontoxic responses in a subset of patients with cancer and abnormalities in the corresponding signal transduction cascades. To achieve successful individualized therapy, the specific components within the aberrant signaling pathways that are driving the pathophysiology of the tumors must be identified in each patient. Molecular diagnostics can identify patients in whom the target is aberrant; linking molecular diagnostics with effective molecular therapeutics will be necessary to translate these concepts into approaches that will alter the outcome for patients with cancer. In addition, intermediary markers and/or molecular imaging techniques must be used to identify the biologically relevant dose that is sufficient to inhibit the target of interest. This review focuses on the PI3K pathway, and novel molecules targeting this pathway, to illustrate the questions and challenges underlying the implementation of molecular therapeutics in breast and ovarian cancer. © 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 102 条
[1]   Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma [J].
Atkins, MB ;
Hidalgo, M ;
Stadler, WM ;
Logan, TF ;
Dutcher, JP ;
Hudes, GR ;
Park, Y ;
Lion, SH ;
Marshall, B ;
Boni, JP ;
Dukart, G ;
Sherman, ML .
JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (05) :909-918
[2]  
ATKINS MB, 2002, P AN M AM SOC CLIN, V21, pA10
[3]   Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis [J].
Bärlund, M ;
Forozan, F ;
Kononen, J ;
Bubendorf, L ;
Chen, YD ;
Bittner, ML ;
Torhorst, J ;
Haas, P ;
Bucher, C ;
Sauter, G ;
Kallioniemi, OP ;
Kallioniemi, A .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2000, 92 (15) :1252-1259
[4]   Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells [J].
Boulay, A ;
Zumstein-Mecker, S ;
Stephan, C ;
Beuvink, I ;
Zilbermann, F ;
Haller, R ;
Tobler, S ;
Heusser, C ;
O'Reilly, T ;
Stolz, B ;
Marti, A ;
Thomas, G ;
Lane, HA .
CANCER RESEARCH, 2004, 64 (01) :252-261
[5]   A MAMMALIAN PROTEIN TARGETED BY G1-ARRESTING RAPAMYCIN-RECEPTOR COMPLEX [J].
BROWN, EJ ;
ALBERS, MW ;
SHIN, TB ;
ICHIKAWA, K ;
KEITH, CT ;
LANE, WS ;
SCHREIBER, SL .
NATURE, 1994, 369 (6483) :756-758
[6]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[7]   Rapamycin-induced endothelial cell death and tumor vessel thrombosis potentiate cytotoxic therapy against pancreatic cancer [J].
Bruns, CJ ;
Koehl, GE ;
Guba, M ;
Yezhelyev, M ;
Steinbauer, M ;
Seeliger, H ;
Schwend, A ;
Hoehn, A ;
Jauch, KW ;
Geissler, EK .
CLINICAL CANCER RESEARCH, 2004, 10 (06) :2109-2119
[8]  
Buchdunger E, 1996, CANCER RES, V56, P100
[9]   Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIk3CA amplification in gastric carcinoma [J].
Byun, DS ;
Cho, K ;
Ryu, BK ;
Lee, MG ;
Park, JI ;
Chae, KS ;
Kim, HJ ;
Chi, SG .
INTERNATIONAL JOURNAL OF CANCER, 2003, 104 (03) :318-327
[10]  
CARPENTER CL, 1990, J BIOL CHEM, V265, P19704