Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions

被引:85
作者
Williams, JG
Drugan, JK
Yi, GS
Clark, GJ
Der, CJ
Campbell, SL
机构
[1] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Pharmacol, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
关键词
D O I
10.1074/jbc.M000397200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Raf-1 is a critical downstream target of Ras and contains two distinct domains that bind Ras. The first Ras-binding site (RBS1) in Raf-1 has been shown to be essential for Ras-mediated translocation of Raf-1 to the plasma membrane, whereas the second site, in the Raf-1 cysteine rich domain (Raf-CRD), has been implicated in regulating Raf kinase activity. While recognition elements that promote Ras RBS1 complex formation have been characterized, relatively little is known about Ras/Raf-CRD interactions. In this study, we have characterized interactions important for Ras binding to the Raf-CRB. Reconciling conflicting reports, we found that these interactions are essentially independent of the guanine nucleotide bound state, but instead, are enhanced by post-translational modification of Ras. Specifically, our findings indicate that Res farnesylation is sufficient for stable association of Ras with the Raf-CRD. Furthermore, we have also identified a Raf-CRD variant that is impaired specifically in its interactions with Ras. MMR data also suggests that residues proximal to this mutation site on the Raf-CRD form contacts with Res. This Raf-CRD mutant impairs the ability of Ras to activate Raf kinase, thereby providing additional support that Ras interactions with the Raf-CRD are important for Ras-mediated activation of Raf-1.
引用
收藏
页码:22172 / 22179
页数:8
相关论文
共 44 条
[1]   Differential structural requirements for interaction of Ras protein with its distinct downstream effectors [J].
Akasaka, K ;
Tamada, M ;
Wang, F ;
Kariya, K ;
Shima, F ;
Kikuchi, A ;
Yamamoto, M ;
Shirouzu, M ;
Yokoyama, S ;
Kataoka, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (10) :5353-5360
[2]   2 DISTINCT RAF DOMAINS MEDIATE INTERACTION WITH RAS [J].
BRTVA, TR ;
DRUGAN, JK ;
GHOSH, S ;
TERRELL, RS ;
CAMPBELLBURK, S ;
BELL, RM ;
DER, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (17) :9809-9812
[3]  
CAMPBELLBURK SL, 1995, METHOD ENZYMOL, V255, P3
[4]  
CHEN WJ, 1993, J BIOL CHEM, V268, P9675
[5]   CRITICAL BINDING AND REGULATORY INTERACTIONS BETWEEN RAS AND RAF OCCUR THROUGH A SMALL, STABLE N-TERMINAL DOMAIN OF RAF AND SPECIFIC RAS EFFECTOR RESIDUES [J].
CHUANG, E ;
BARNARD, D ;
HETTICH, L ;
ZHANG, XF ;
AVRUCH, J ;
MARSHALL, MS .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (08) :5318-5325
[6]   14-3-3 zeta negatively regulates Raf-1 activity by interactions with the Raf-1 cysteine-rich domain [J].
Clark, GJ ;
Drugan, JK ;
Rossmann, KL ;
Carpenter, JW ;
RogersGraham, K ;
Fu, H ;
Der, CJ ;
Campbell, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (34) :20990-20993
[7]   Autoregulation of the Raf-1 serine/threonine kinase [J].
Cutler, RE ;
Stephens, RM ;
Saracino, MR ;
Morrison, DK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (16) :9214-9219
[8]   Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation [J].
Drugan, JK ;
KhosraviFar, R ;
White, MA ;
Der, CJ ;
Sung, YJ ;
Hwang, YW ;
Campbell, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (01) :233-237
[9]   CRITICAL TYROSINE RESIDUES REGULATE THE ENZYMATIC AND BIOLOGICAL-ACTIVITY OF RAF-1 KINASE [J].
FABIAN, JR ;
DAAR, IO ;
MORRISON, DK .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (11) :7170-7179
[10]  
Gelber S, 1998, BEHAV HEALTHC TOM, V7, P40