A method to measure the hyperelastic parameters of ex vivo breast tissue samples

被引:145
作者
Samani, A [1 ]
Plewes, D
机构
[1] Univ Western Ontario, Dept Med Biophys Elect & Comp Engn, London, ON N6A 5C1, Canada
[2] Univ Toronto, Dept Med Biophys, Toronto, ON M4N 3M5, Canada
关键词
D O I
10.1088/0031-9155/49/18/014
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Over the past decade, there has been increasing interest in modelling soft tissue deformation. This topic has several biomedical applications ranging from medical imaging to robotic assisted telesurgery. In these applications, tissue deformation can be very large due to low tissue stiffness and lack of physical constraints. As a result, deformation modelling of such organs often requires a treatment, which reflects nonlinear behaviour. While computational techniques such as nonlinear finite element methods are well developed, the required intrinsic nonlinear mechanical parameters of soft tissues that are critical to develop reliable tissue deformation models are not well known. To address this issue, we developed a system to measure the hyperelastic parameters of small ex vivo tissue samples. This measurement technique consists of indenting an unconfined small block of tissue using a computer controlled loading system while measuring the resulting indentation force. The nonlinear tissue force-displacement response is used to calculate the hyperelastic parameters via an appropriate inversion technique. This technique is based on a nonlinear least squares formulation that uses a nonlinear finite element model as the direct problem solver. The features of the system are demonstrated with two samples of breast tissue and typical hyperelastic results are presented.
引用
收藏
页码:4395 / 4405
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 1999, THESIS HARVARD U
[2]   A 3-DIMENSIONAL CONSTITUTIVE MODEL FOR THE LARGE STRETCH BEHAVIOR OF RUBBER ELASTIC-MATERIALS [J].
ARRUDA, EM ;
BOYCE, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (02) :389-412
[3]  
Bathe K, 2007, Finite element procedures
[4]   Elasticity reconstructive imaging by means of stimulated echo MRI [J].
Chenevert, TL ;
Skovoroda, AR ;
O'Donnell, M ;
Emelianov, SY .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (03) :482-490
[5]  
COTIN S, 1998, P ICRA
[6]  
DIMAIO SP, 2002, P MICCAI
[7]  
Fung Y., 1993, BIOMECHANICS MECH PR
[8]  
Holzapfel GA., 2000, NONLINEAR SOLID MECH
[9]  
Humphrey JD, 1995, CRIT REV BIOMED ENG, V23, P1
[10]   Elastic moduli of breast and prostate tissues under compression [J].
Krouskop, TA ;
Wheeler, TM ;
Kallel, F ;
Garra, BS ;
Hall, T .
ULTRASONIC IMAGING, 1998, 20 (04) :260-274