ESOM: An algorithm to evolve self-organizing maps from on-line data streams

被引:45
作者
Deng, D [1 ]
Kasabov, N [1 ]
机构
[1] Univ Otago, Dept Informat Sci, Dunedin, New Zealand
来源
IJCNN 2000: PROCEEDINGS OF THE IEEE-INNS-ENNS INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOL VI | 2000年
关键词
D O I
10.1109/IJCNN.2000.859364
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An algorithm of evolving self-organizing map (ESOM) is proposed as a dynamic version of the Kohonen self-organizing map, where network structure is evolved in an on-line adaptive mode. Experiments have been carried out on some benchmark data sets as well as on macroeconomic data. Results show that ESOM is a good tool for clustering, data analysis, and visualisation.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 16 条
[1]  
[Anonymous], METHODOLOGIES CONCEP
[2]  
BLACKMORE J, 1993, P IEEE INT C NEUR NE, V1, P450
[3]  
DEBOECK G, 1999, INVESTMENT MAPS EMER, P373
[4]  
DENG D, 1999, P ICONIP ANZIIS ANNE
[5]  
*EUR CENTR BANK, 1999, EUR CENTR BANK MONTL
[6]   GROWING CELL STRUCTURES - A SELF-ORGANIZING NETWORK FOR UNSUPERVISED AND SUPERVISED LEARNING [J].
FRITZKE, B .
NEURAL NETWORKS, 1994, 7 (09) :1441-1460
[7]   LEARNING-PROCESSES IN NEURAL NETWORKS [J].
HESKES, TM ;
KAPPEN, B .
PHYSICAL REVIEW A, 1991, 44 (04) :2718-2726
[8]  
KASABOV N, 2000, IN PRESS FUTURE DIRE
[9]  
Kasabov N, 1998, J ADV COMPUTATIONAL, V2, P1
[10]  
KASKI S, 1997, COMPUTING MANAGEMENT, V82