Molecular and functional characterization of SLC26A11, a sodium-independent sulfate transporter from high endothelial venules

被引:68
作者
Vincourt, JB
Jullien, D
Amalric, F
Girard, JP
机构
[1] Inst Pharmacol & Biol Struct, Lab Biol Vasc, Inst Pharmacol & Biol Struct, CNRS,UMR 5089, F-31077 Toulouse, France
[2] ENDOCUBE, F-31312 Labege, France
关键词
endothelial cells; sulfation; L-selectin; lymphocyte migration; sulfate/anion exchanger;
D O I
10.1096/fj.02-0787fje
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lymphocyte emigration from the blood into most secondary lymphoid organs and chronically inflamed tissues occurs at the level of high endothelial venules (HEV). A unique characteristic of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. We have previously shown that sulfate uptake into HEVEC is mediated by two distinct functional classes of sulfate transporters: Na+-coupled transporters and sulfate/anion exchangers. Here, we report the molecular characterization from human HEVEC of SLC26A11, a novel member of the SLC26 sulfate/anion exchanger family. Functional expression studies in COS-7 and Sf9 insect cells revealed that SLC26A11 is targeted to the cell membrane and exhibits Na+-independent sulfate transport activity, sensitive to the anion exchanger inhibitor 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS). Northern blot analysis showed the highest SLC26A11 transcript levels in placenta, kidney, and brain. The SLC26A11 gene mapped to human chromosome 17q25, very close to the hereditary hearing loss diseases loci DFNA20, DFNA26, and USH1G. RT-PCR analysis of SLC26 sulfate transporters in human HEVEC revealed coexpression of SLC26A11 with SLC26A2/DTDST and lack of SLC26A1/SAT1, SLC26A3/DRA, and SLC26A8/TAT1. Together, our results indicate that SLC26A11 is a novel Na+-independent sulfate transporter that may cooperate with SLC26A2 to mediate DIDS-sensitive sulfate uptake into HEVEC.
引用
收藏
页码:890 / +
页数:21
相关论文
共 46 条
[1]  
ANDREWS P, 1982, J CELL SCI, V57, P277
[2]  
Baekkevold ES, 1999, LAB INVEST, V79, P327
[3]   BINDING OF L-SELECTIN TO THE VASCULAR SIALOMUCIN CD34 [J].
BAUMHUETER, S ;
SINGER, MS ;
HENZEL, W ;
HEMMERICH, S ;
RENZ, M ;
ROSEN, SD ;
LASKY, LA .
SCIENCE, 1993, 262 (5132) :436-438
[4]  
BISSIG M, 1994, J BIOL CHEM, V269, P3017
[5]   Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin [J].
Bistrup, A ;
Bhakta, S ;
Lee, JK ;
Belov, YY ;
Gunn, MD ;
Zuo, FR ;
Huang, CC ;
Kannagi, R ;
Rosen, SD ;
Hemmerich, S .
JOURNAL OF CELL BIOLOGY, 1999, 145 (04) :899-910
[6]   Lymphocyte homing and homeostasis [J].
Butcher, EC ;
Picker, LJ .
SCIENCE, 1996, 272 (5258) :60-66
[7]   Human DRA functions as a sulfate transporter in Sf9 insect cells [J].
Byeon, MK ;
Frankel, A ;
Papas, TS ;
Henderson, KW ;
Schweinfest, CW .
PROTEIN EXPRESSION AND PURIFICATION, 1998, 12 (01) :67-74
[8]  
Cherest H, 1997, GENETICS, V145, P627
[9]   Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS) [J].
Everett, LA ;
Glaser, B ;
Beck, JC ;
Idol, JR ;
Buchs, A ;
Heyman, M ;
Adawi, F ;
Hazani, E ;
Nassir, E ;
Baxevanis, AD ;
Sheffield, VC ;
Green, ED .
NATURE GENETICS, 1997, 17 (04) :411-422