Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules

被引:66
作者
Bruckner, Peter [1 ]
机构
[1] Univ Hosp Munster, Inst Physiol Chem & Pathobiochem, D-48149 Munster, Germany
关键词
Collagen; Fibronectin; Basement membrane; Suprastructure; Tissue organisation; SMALL PROTEOGLYCAN DECORIN; HUMAN ARTICULAR-CARTILAGE; HIGH-AFFINITY BINDING; COLLAGEN TYPE-II; BASEMENT-MEMBRANE; IV COLLAGEN; ELECTRON-MICROSCOPY; FIBRIL STRUCTURE; NIDOGEN-BINDING; EPITHELIAL MORPHOGENESIS;
D O I
10.1007/s00441-009-0864-0
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Extracellular matrices (ECM) not only serve as structural scaffolds in organs and tissues, but also determine critical cellular functions through cell-matrix interactions. These are mediated by cell surface receptors that recognise specific structural features of ECMs and, hence, overall physical properties of the acellular environment. ECM structures are subject to hierarchic organisations, which are tightly adapted to the functions of tissues and organs. Only a few specialised tasks are reserved for isolated ECM macromolecules. Instead, molecular ECM components attain their prominent functions only after polymerising into insoluble suprastructural elements, i.e. fibrils, microfibrils, or networks that, in turn, are assembled into regional tissue structures, such as fibres or basement membranes. As an outstanding feature, most, if not all, ECM suprastructures are co-polymers of more than one molecular species that differ in their identity and relative abundance. Thus, ECM suprastructures are composite biological amalgamates. The analogy to metal alloys refers to structural and functional characteristics of ECM composites, which differ from those of each homo-polymeric aggregate. At the tissue level, biological alloys can themselves be assembled into conglomerates that again assume properties distinct from those of each individual alloy. Nevertheless, most studies in matrix biology solely focus on molecular features and mechanisms. Progress has however been made in identifying principles of interactions within suprastructural elements and their functional consequences. We are now only beginning to understand the impact of suprastructural organisation on the assembly and the functions of whole tissues and many fundamental issues in this almost pristine field await discovery.
引用
收藏
页码:7 / 18
页数:12
相关论文
共 89 条
[1]   INVITRO FORMATION OF HYBRID FIBRILS OF TYPE-V COLLAGEN AND TYPE-I COLLAGEN - LIMITED GROWTH OF TYPE-I COLLAGEN INTO THICK FIBRILS BY TYPE-V COLLAGEN [J].
ADACHI, E ;
HAYASHI, T .
CONNECTIVE TISSUE RESEARCH, 1986, 14 (04) :257-266
[2]   NIDOGEN MEDIATES THE FORMATION OF TERNARY COMPLEXES OF BASEMENT-MEMBRANE COMPONENTS [J].
AUMAILLEY, M ;
BATTAGLIA, C ;
MAYER, U ;
REINHARDT, D ;
NISCHT, R ;
TIMPL, R ;
FOX, JW .
KIDNEY INTERNATIONAL, 1993, 43 (01) :7-12
[3]   A simplified laminin nomenclature [J].
Aumailley, M ;
Bruckner-Tuderman, L ;
Carter, WG ;
Deutzmann, R ;
Edgar, D ;
Ekblom, P ;
Engel, J ;
Engvall, E ;
Hohenester, E ;
Jones, JCR ;
Kleinman, HK ;
Marinkovich, MP ;
Martin, GR ;
Mayer, U ;
Meneguzzi, G ;
Miner, JH ;
Miyazaki, K ;
Patarroyo, M ;
Paulsson, M ;
Quaranta, V ;
Sanes, JR ;
Sasaki, T ;
Sekiguchi, K ;
Sorokin, LM ;
Talts, JF ;
Tryggvason, K ;
Uitto, J ;
Virtanen, I ;
von der Mark, K ;
Wewer, UM ;
Yamada, Y ;
Yurchenco, PD .
MATRIX BIOLOGY, 2005, 24 (05) :326-332
[4]   Integrins in angiogenesis and lymphangiogenesis [J].
Avraamides, Christie J. ;
Garmy-Susini, Barbara ;
Varner, Judith A. .
NATURE REVIEWS CANCER, 2008, 8 (08) :604-617
[5]   Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension [J].
Baneyx, G ;
Baugh, L ;
Vogel, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5139-5143
[6]   Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer [J].
Baneyx, G ;
Baugh, L ;
Vogel, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14464-14468
[7]  
Benninghoff A., 1922, ANAT ANZ ERG, V55, P250
[8]  
Benninghoff A., 1925, Z FR ZELLFORSCHUNG M, V2, P783, DOI [DOI 10.1007/BF00583443, 10.1007/BF00583443]
[9]  
BIRK DE, 1990, J CELL SCI, V95, P649
[10]   Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils [J].
Blaschke, UK ;
Eikenberry, EF ;
Hulmes, DJS ;
Galla, HJ ;
Bruckner, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (14) :10370-10378