Analysis of a GI/M/1 queue with multiple working vacations

被引:130
作者
Baba, Y [1 ]
机构
[1] Yokohama Natl Univ, Fac Educ & Human Sci, Dept Math Educ, Yokohama, Kanagawa 2408501, Japan
关键词
GI/M/1; queue; working vacation; embedded Markov chain; matrix-geometric approach;
D O I
10.1016/j.orl.2004.05.006
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Consider a GI/M/1 queue with vacations such that the server works with different rates rather than completely stops during a vacation period. We derive the steady-state distributions for the number of customers in the system both at arrival and arbitrary epochs, and for the sojourn time for an arbitrary customer. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 209
页数:9
相关论文
共 8 条
[1]  
Doshi B., 1990, Stochastic analysis of computer and communication systems, P217
[2]  
Doshi B. T., 1986, Queueing Systems Theory and Applications, V1, P29, DOI 10.1007/BF01149327
[3]  
Gross D., 1998, Fundamentals of queueing theory, V3
[4]  
Neuts Marcel F., 1994, MATRIX GEOMETRIC SOL
[5]   M/M/1 queues with working vacations (M/M/1/WV) [J].
Servi, LD ;
Finn, SG .
PERFORMANCE EVALUATION, 2002, 50 (01) :41-52
[6]  
Takagi H., 1991, VACATION PRIORITY SY, V1
[7]  
Tian N. S., 1989, QUEUEING SYST, V5, P331
[8]  
Wu D, 2003, P QUEUEING S STOCHAS, P51