In situ polymerization of ethylene with bis(imino)pyridine iron(II) catalysts supported on clay:: The synthesis and characterization of polyethylene-clay nanocomposites

被引:53
作者
Ray, S [1 ]
Galgali, G [1 ]
Lele, A [1 ]
Sivaram, S [1 ]
机构
[1] Natl Chem Lab, Polymer Sci & Engn Div, Pune 411008, Maharashtra, India
关键词
clay; in situ polymerization; nanocomposites; polyethylene (PE); TEM; WAXS;
D O I
10.1002/pola.20502
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polyethylene-clay nanocomposites were synthesized by in situ polymerization with 2,6-bis[1-(2,6-diisopropylphenylimino)ethyl] pyridine iron(II) dichloride supported on a modified montmorillonite clay pretreated with methylaluminoxane (MAO). The catalysts and the obtained nanocomposites were examined with wide-angle X-ray scattering. The exfoliation of the clay was further established by transmission electron microscopy. Upon the treatment of the clay with MAO, there was an increase in the d-spacing of the clay galleries. No further increase in the d-spacing of the galleries was observed with the iron catalyst supported on the MAO-treated clay. The catalyst activity for ethylene polymerization was independent of the Al/Fe ratio. The exfoliation of the clay inside the polymer matrix depended on various parameters, such as the clay content, catalyst content, and Al/Fe ratio. The crystallinity percentage and crystallite size of the nanocomposites were affected by the degree of exfoliation of the clay. Moreover, when ethylene was polymerized with a mixture of the homogeneous iron(II) catalyst and clay, the degree of exfoliation was significantly lower than when the polymerization was performed with a preformed clay-supported catalyst. This observation suggested that in the supported catalyst, at least some of the active centers resided within the galleries of the clay. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:304 / 318
页数:15
相关论文
共 34 条
[1]   Polymer-clay nanocomposites: Free-radical grafting of polystyrene on to organophilic montmorillonite interlayers [J].
Akelah, A ;
Moet, A .
JOURNAL OF MATERIALS SCIENCE, 1996, 31 (13) :3589-3596
[2]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[3]   Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique:: synthesis and mechanical properties [J].
Alexandre, M ;
Dubois, P ;
Sun, T ;
Garces, JM ;
Jérôme, R .
POLYMER, 2002, 43 (08) :2123-2132
[4]   Synthesis and characterization of polyolefin-silicate nanocomposites:: a catalyst intercalation and in situ polymerization approach [J].
Bergman, JS ;
Chen, H ;
Giannelis, EP ;
Thomas, MG ;
Coates, GW .
CHEMICAL COMMUNICATIONS, 1999, (21) :2179-2180
[5]   Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino)pyridyl ligands:: Synthesis, structures, and polymerization studies [J].
Britovsek, GJP ;
Bruce, M ;
Gibson, VC ;
Kimberley, BS ;
Maddox, PJ ;
Mastroianni, S ;
McTavish, SJ ;
Redshaw, C ;
Solan, GA ;
Strömberg, S ;
White, AJP ;
Williams, DJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (38) :8728-8740
[6]   Synthetic organo- and polymer-clays: preparation, characterization, and materials applications [J].
Carrado, KA .
APPLIED CLAY SCIENCE, 2000, 17 (1-2) :1-23
[7]   Synthesis and properties of polystyrene organoammonium montmorillonite hybrid [J].
Doh, JG ;
Cho, I .
POLYMER BULLETIN, 1998, 41 (05) :511-518
[8]   A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites [J].
Galgali, G ;
Ramesh, C ;
Lele, A .
MACROMOLECULES, 2001, 34 (04) :852-858
[9]  
Giannelis EP, 1999, ADV POLYM SCI, V138, P107
[10]   Polymer layered silicate nanocomposites [J].
Giannelis, EP .
ADVANCED MATERIALS, 1996, 8 (01) :29-&