Role of Listeria monocytogenes σB in survival of lethal acidic conditions and in the acquired acid tolerance response

被引:134
作者
Ferreira, A
Sue, D
O'Byrne, CP
Boor, KJ
机构
[1] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA
[2] Natl Univ Ireland Univ Coll Galway, Dept Microbiol, Galway, Ireland
关键词
D O I
10.1128/AEM.69.5.2692-2698.2003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, or sigma(B), which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and DeltasigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the DeltasigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both DeltasigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is sigma(B) independent. sigma(B)-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional sigma(B) reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. sigma(B) does not appear to contribute to pH(i) homeostasis through regulation of net proton movement across the cell membrane or by regulation of pH(i) buffering by the GAD system under the conditions examined in this study. In summary, a functional sigma(B) protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.
引用
收藏
页码:2692 / 2698
页数:7
相关论文
共 41 条
[1]   General and oxidative stress responses in Bacillus subtilis: Cloning, expression, and mutation of the alkyl hydroperoxide reductase operon [J].
Antelmann, H ;
Engelmann, S ;
Schmid, R ;
Hecker, M .
JOURNAL OF BACTERIOLOGY, 1996, 178 (22) :6571-6578
[2]   Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigma(B) in Bacillus subtilis [J].
Antelmann, H ;
Engelmann, S ;
Schmid, R ;
Sorokin, A ;
Lapidus, A ;
Hecker, M .
JOURNAL OF BACTERIOLOGY, 1997, 179 (23) :7251-7256
[3]   Breaking through the acid barrier: An orchestrated response to proton stress by enteric bacteria [J].
Audia, JP ;
Webb, CC ;
Foster, JW .
INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2001, 291 (02) :97-106
[4]   Acid stress responses in enterobacteria [J].
Bearson, S ;
Bearson, B ;
Foster, JW .
FEMS MICROBIOLOGY LETTERS, 1997, 147 (02) :173-180
[5]   Role of σB in adaptation of Listeria monocytogenes to growth at low temperature [J].
Becker, LA ;
Evans, SN ;
Hutkins, RW ;
Benson, AK .
JOURNAL OF BACTERIOLOGY, 2000, 182 (24) :7083-7087
[6]   Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance [J].
Becker, LA ;
Çetin, MS ;
Hutkins, RW ;
Benson, AK .
JOURNAL OF BACTERIOLOGY, 1998, 180 (17) :4547-4554
[7]   Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus [J].
Bischoff, M ;
Entenza, JM ;
Giachino, P .
JOURNAL OF BACTERIOLOGY, 2001, 183 (17) :5171-5179
[8]   REGULATION OF CYTOPLASMIC PH IN BACTERIA [J].
BOOTH, IR .
MICROBIOLOGICAL REVIEWS, 1985, 49 (04) :359-378
[9]  
Chan PF, 1998, J BACTERIOL, V180, P6082
[10]   A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid [J].
Cotter, PD ;
Gahan, CGM ;
Hill, C .
MOLECULAR MICROBIOLOGY, 2001, 40 (02) :465-475