Altering the nucleophile specificity of a protein-tyrosine phosphatase-catalyzed reaction - Probing the function of the invariant glutamine residues

被引:62
作者
Zhao, Y
Wu, L
Noh, SJ
Guan, KL
Zhang, ZY
机构
[1] Yeshiva Univ Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10461 USA
[2] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1074/jbc.273.10.5484
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-tyrosine phosphatases (PTPases) catalysis involves a cysteinyl phosphate intermediate, in which the phosphoryl group cannot be transferred to nucleophiles other than water. The dual specificity phosphatases and the low molecular weight phosphatases utilize the same chemical mechanism far catalysis and contain the same (H/V)C(X)(5)R(S/T) signature motif present in PTPases, Interestingly, the latter two groups of phosphatases do catalyze phosphoryl transfers to alcohols in addition to water, Unique to the PTPase family are two invariant Gin residues which are located at the active site, Mutations at Gln-446 (and to a much smaller extent Gln-450) to Ala, Asn, or Met (but not Glu) residues disrupt a bifurcated hydrogen bond between the side chain of Gln-446 and the nucleophilic water and confer phosphotransferase activity to the Yersinia PTPase, Thus, the conserved Gln-446 residue is responsible for maintaining PTPases' strict hydrolytic activity and for preventing the PTPases from acting as kinases to phosphorylate undesirable substrates, This explains why phosphoryl transfer from the phosphoenzyme intermediate in PTPases can only occur to mater and not to other nucleophilic accepters. Detailed kinetic analyses also suggest roles for Gln-446 and Gln-450 in PTPase catalysis. Although Gln-446 is not essential for the phosphoenzyme formation step, it plays an important role during the hydrolysis of the intermediate by sequestering and positioning the nucleophilic water in the active site for an in-line attack on the phosphorus atom of the cysteinyl phosphate intermediate. Gln-450 interacts through a bound water molecule with the phosphoryl moiety and may play a role for the precise alignment of active site residues, which are important for substrate binding and transition state stabilization for both of the chemical steps.
引用
收藏
页码:5484 / 5492
页数:9
相关论文
共 36 条
[1]   CRYSTAL-STRUCTURE OF HUMAN PROTEIN-TYROSINE-PHOSPHATASE 1B [J].
BARFORD, D ;
FLINT, AJ ;
TONKS, NK .
SCIENCE, 1994, 263 (5152) :1397-1404
[2]   PROTEIN-TYROSINE PHOSPHATASES TAKE-OFF [J].
BARFORD, D ;
JIA, ZC ;
TONKS, NK .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (12) :1043-1053
[3]   TYROSINE PHOSPHATE HYDROLYSIS OF HOST PROTEINS BY AN ESSENTIAL YERSINIA-VIRULENCE DETERMINANT [J].
BLISKA, JB ;
GUAN, KL ;
DIXON, JE ;
FALKOW, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (04) :1187-1191
[4]   ISOLATION AND STRUCTURAL ELUCIDATION OF A NOVEL PHOSPHOCYSTEINE INTERMEDIATE IN THE LAR PROTEIN TYROSINE PHOSPHATASE ENZYMATIC PATHWAY [J].
CHO, HJ ;
KRISHNARAJ, R ;
KITAS, E ;
BANNWARTH, W ;
WALSH, CT ;
ANDERSON, KS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (18) :7296-7298
[5]   CATALYTIC DOMAINS OF THE LAR AND CD45 PROTEIN TYROSINE PHOSPHATASES FROM ESCHERICHIA-COLI EXPRESSION SYSTEMS - PURIFICATION AND CHARACTERIZATION FOR SPECIFICITY AND MECHANISM [J].
CHO, HJ ;
RAMER, SE ;
ITOH, M ;
KITAS, E ;
BANNWARTH, W ;
BURN, P ;
SAITO, H ;
WALSH, CT .
BIOCHEMISTRY, 1992, 31 (01) :133-138
[6]   Form and function in protein dephosphorylation [J].
Denu, JM ;
Stuckey, JA ;
Saper, MA ;
Dixon, JE .
CELL, 1996, 87 (03) :361-364
[7]   The x-ray crystal structures of Yersinia tyrosine phosphatase with bound tungstate and nitrate - Mechanistic implications [J].
Fauman, EB ;
Yuvaniyama, C ;
Schubert, HL ;
Stuckey, JA ;
Saper, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (31) :18780-18788
[8]   Structure and function of the protein tyrosine phosphatases [J].
Fauman, EB ;
Saper, MA .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (11) :413-417
[9]  
FERSHT A, 1985, ENZYME STRUCTURE MEC, P206
[10]   Development of ''substrate-trapping'' mutants to identify physiological substrates of protein tyrosine phosphatases [J].
Flint, AJ ;
Tiganis, T ;
Barford, D ;
Tonks, NK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1680-1685