Proof of Bose-Einstein condensation for interacting gases with a one-particle spectral gap

被引:16
作者
Lauwers, J [1 ]
Verbeure, A [1 ]
Zagrebnov, VA [1 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, B-3001 Heverlee, Belgium
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 11期
关键词
D O I
10.1088/0305-4470/36/11/102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spectrum, i.e. we prove for the first time standard homogeneous Bose-Einstein condensation for such interacting systems.
引用
收藏
页码:L169 / L174
页数:6
相关论文
共 20 条
[1]  
Bratteli O., 1996, Operator algebras and quantum statistical mechanics, V2
[2]  
BUFFET E, 1983, J PHYS A-MATH GEN, V16, P4307, DOI 10.1088/0305-4470/16/18/031
[3]   FLUCTUATION PROPERTIES OF THE IMPERFECT BOSE-GAS [J].
BUFFET, E ;
PULE, JV .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) :1608-1616
[4]   THERMODYNAMIC LIMIT FOR AN IMPERFECT BOSON GAS [J].
DAVIES, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 28 (01) :69-&
[5]   THE FULL DIAGONAL MODEL OF A BOSE-GAS [J].
DORLAS, TC ;
LEWIS, JT ;
PULE, JV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (01) :37-65
[6]  
ELLIOT HL, 2002, PHYS REV LETT, V88
[7]   THE CONDENSED PHASE OF THE IMPERFECT BOSE-GAS [J].
FANNES, M ;
VERBEURE, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (07) :1809-1818
[8]  
HUANG K., 1967, STAT MECH
[9]  
JOHN TC, 1973, COMMUN MATH PHYS, V29, P89
[10]   BOSE-EINSTEIN CONDENSATION OF AN IDEAL-GAS [J].
LANDAU, LJ ;
WILDE, IF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 70 (01) :43-51