Parallel single grid and multigrid solution of industrial compressible flow problems

被引:10
作者
Alund, A
Lotstedt, P [1 ]
Sillen, M
机构
[1] Saab AB, Linkoping, Sweden
[2] Swedish Inst Appl Math, ITM, Gothenburg, Sweden
[3] Uppsala Univ, Dept Comp Sci, Uppsala, Sweden
关键词
D O I
10.1016/S0045-7930(97)00018-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Euler and Navier-Stokes equations with a k-epsilon turbulence model are solved numerically in parallel on a distributed memory machine IBM SP2, a shared memory machine SGI Power Challenge, and a cluster of SGI workstations. The grid is partitioned into blocks and the steady stare solution is computed using single grid and multigrid iteration. The multigrid algorithm is analyzed leading to an estimate of the elapsed time per iteration. Based on this analysis, a heuristic algorithm is devised for distributing and splitting the blocks for a good static load balance. Speed-up results are presented for a wing, a complete aircraft and an air inlet. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:775 / 791
页数:17
相关论文
共 25 条
[1]  
Alund A., 1997, Parallel Computational Fluid Dynamics. Algorithms and Results Using Advanced Computers. Proceedings of the Parallel CFD '96 Conference, P336, DOI 10.1016/B978-044482327-4/50109-1
[2]  
ALUND A, 1994, LECT NOTES COMPUTER, V879, P1
[3]  
DAVIDSON L, 1992, 920195 AIAA
[4]   RUN-TIME LOAD BALANCING SUPPORT FOR A PARALLEL MULTIBLOCK EULER NAVIER-STOKES CODE WITH ADAPTIVE REFINEMENT ON DISTRIBUTED-MEMORY COMPUTERS [J].
DEKEYSER, J ;
LUST, K ;
ROOSE, D .
PARALLEL COMPUTING, 1994, 20 (08) :1069-1088
[5]  
DENICOLA C, 1995, PARALLEL COMPUT, P281
[6]  
Dongarra J., 1993, Computers in Physics, V7, P166
[7]   Parallel implementations of 2D explicit Euler solvers [J].
Giraud, L ;
Manzini, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 123 (01) :111-118
[8]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI 10.1007/978-3-662-02427-0
[9]  
HAUSER J, 1994, COMPUTATIONAL FLUID, P432
[10]   COMPUTATIONAL TRANSONICS [J].
JAMESON, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (05) :507-549