Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338

被引:305
作者
Oliynyk, Markiyan [1 ]
Samborskyy, Markiyan [1 ]
Lester, John B. [1 ]
Mironenko, Tatiana [1 ]
Scott, Nataliya [1 ]
Dickens, Shilo [1 ]
Haydock, Stephen F. [1 ]
Leadlay, Peter F. [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1038/nbt1297
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Saccharopolyspora erythraea is used for the industrial- scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes Mycobacterium tuberculosis and Corynebacterium diphtheriae, but unlike the linear chromosomes of the model actinomycete Streptomyces coelicolor A3( 2) and the closely related Streptomyces avermitilis. The S. erythraea genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of S. erythraea will improve insight into its biology and facilitate rational development of strains to generate high- titer producers of clinically important antibiotics.
引用
收藏
页码:447 / 453
页数:7
相关论文
共 50 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication [J].
Bao, K ;
Cohen, SN .
GENES & DEVELOPMENT, 2003, 17 (06) :774-785
[3]   Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145 [J].
Barona-Gómez, F ;
Wong, U ;
Giannakopulos, AE ;
Derrick, PJ ;
Challis, GL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (50) :16282-16283
[4]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[5]   A new modular polyketide synthase in the erythromycin producer Saccharopolyspora erythraea [J].
Boakes, S ;
Oliynyk, M ;
Cortés, J ;
Böhm, I ;
Rudd, BAM ;
Revill, WP ;
Staunton, J ;
Leadlay, PF .
JOURNAL OF MOLECULAR MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 8 (02) :73-80
[6]   Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism [J].
Borodina, I ;
Krabben, P ;
Nielsen, J .
GENOME RESEARCH, 2005, 15 (06) :820-829
[7]   CHARACTERIZATION OF THE GENES AND ATTACHMENT SITES FOR SITE-SPECIFIC INTEGRATION OF PLASMID PSE101 IN SACCHAROPOLYSPORA-ERYTHRAEA AND STREPTOMYCES-LIVIDANS [J].
BROWN, DP ;
IDLER, KB ;
BACKER, DM ;
DONADIO, S ;
KATZ, L .
MOLECULAR & GENERAL GENETICS, 1994, 242 (02) :185-193
[8]   CHARACTERIZATION OF THE GENETIC ELEMENTS REQUIRED FOR SITE-SPECIFIC INTEGRATION OF PLASMID PSE211 IN SACCHAROPOLYSPORA-ERYTHRAEA [J].
BROWN, DP ;
IDLER, KB ;
KATZ, L .
JOURNAL OF BACTERIOLOGY, 1990, 172 (04) :1877-1888
[9]   The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129 [J].
Cerdeño-Tárraga, AM ;
Efstratiou, A ;
Dover, LG ;
Holden, MTG ;
Pallen, M ;
Bentley, SD ;
Besra, GS ;
Churcher, C ;
James, KD ;
De Zoysa, A ;
Chillingworth, T ;
Cronin, A ;
Dowd, L ;
Feltwell, T ;
Hamlin, N ;
Holroyd, S ;
Jagels, K ;
Moule, S ;
Quail, MA ;
Rabbinowitsch, E ;
Rutherford, KM ;
Thomson, NR ;
Unwin, L ;
Whitehead, S ;
Barrell, BG ;
Parkhill, J .
NUCLEIC ACIDS RESEARCH, 2003, 31 (22) :6516-6523
[10]   Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains [J].
Challis, GL ;
Ravel, J ;
Townsend, CA .
CHEMISTRY & BIOLOGY, 2000, 7 (03) :211-224