Prevention of polyglutamine oligomerization and neurodegeneration by the peptide inhibitor QBP1 in Drosophila

被引:110
作者
Nagai, Y
Fujikake, N
Ohno, K
Higashiyama, H
Popiel, HA
Rahadian, J
Yamaguchi, M
Strittmatter, WJ
Burke, JR
Toda, T
机构
[1] Osaka Univ, Div Funct Genom, Dept Post Genom & Dis, Grad Sch Med, Osaka 5650871, Japan
[2] Osaka Biosci Inst, Dept 4, Osaka 5650874, Japan
[3] Kyoto Inst Technol, Chromosome Technol Grp, Div Biotechnol, Fac Text Sci, Kyoto 6068585, Japan
[4] Aichi Canc Ctr, Div Mol Med, Res Inst, Chikusa Ku, Aichi 4648681, Japan
[5] Duke Univ, Med Ctr, Dept Med Neurol, Durham, NC 27710 USA
[6] Duke Univ, Med Ctr, Deane Lab, Durham, NC 27710 USA
基金
日本学术振兴会;
关键词
D O I
10.1093/hmg/ddg144
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyglutamine (polyQ) diseases are a growing class of inherited neurodegenerative diseases including Huntington's disease, which are caused by abnormal expansions of the polyQ stretch in each unrelated disease protein. The expanded polyQ stretch is thought to confer toxic properties on the disease proteins through alteration of their conformation leading to pathogenic protein-protein interactions including oligomerization and/or aggregation. Hypothesizing that molecules with selective binding affinity to the expanded polyQ stretch may interfere with the pathogenic properties, we previously identified Polyglutamine Binding Peptide 1 (QBP1) from combinatorial peptide phage display libraries. We show here that a tandem repeat of the inhibitor peptide QBP1, (QBP1)(2), significantly suppresses polyQ aggregation and polyQ-induced neurodegeneration in the compound eye of Drosophila polyQ disease models, which express the expanded polyQ protein under the eye specific promoter. Most importantly, (QBP1)(2) expression dramatically rescues premature death of flies expressing the expanded polyQ protein in the nervous system, resulting in the dramatic increase of the median life span from 5.5 to 52 days. These results suggest that QBP1 can prevent polyQ-induced neurodegeneration in vivo. We propose that QBP1 prevents polyQ oligomerization and/or aggregation either by altering the toxic conformation of the expanded polyQ stretch, or by simply competing with the expanded polyQ stretches for binding to other expanded polyQ proteins. The peptide inhibitor QBP1 is a promising candidate with great potential as a therapeutic molecule against the currently untreatable polyQ diseases.
引用
收藏
页码:1253 / 1259
页数:7
相关论文
共 46 条
[1]   Transgenic mice with an expanded CAG repeat controlled by the human AR promoter show polyglutamine nuclear inclusions and neuronal dysfunction without neuronal cell death [J].
Adachi, H ;
Kume, A ;
Li, M ;
Nakagomi, Y ;
Niwa, H ;
Do, J ;
Sang, C ;
Kobayashi, Y ;
Doyu, M ;
Sobue, G .
HUMAN MOLECULAR GENETICS, 2001, 10 (10) :1039-1048
[2]   Transgenic mice in the study of polyglutamine repeat expansion diseases [J].
Bates, GP ;
Mangiarini, L ;
Davies, SW .
BRAIN PATHOLOGY, 1998, 8 (04) :699-714
[3]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[4]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[5]   Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases [J].
Bucciantini, M ;
Giannoni, E ;
Chiti, F ;
Baroni, F ;
Formigli, L ;
Zurdo, JS ;
Taddei, N ;
Ramponi, G ;
Dobson, CM ;
Stefani, M .
NATURE, 2002, 416 (6880) :507-511
[6]   Huntington and DRPLA proteins selectively interact with the enzyme GAPDH [J].
Burke, JR ;
Enghild, JJ ;
Martin, ME ;
Jou, YS ;
Myers, RM ;
Roses, AD ;
Vance, JM ;
Strittmatter, WJ .
NATURE MEDICINE, 1996, 2 (03) :347-350
[7]   Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's disease [J].
Carmichael, J ;
Chatellier, J ;
Woolfson, A ;
Milstein, C ;
Fersht, AR ;
Rubinsztein, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (17) :9701-9705
[8]  
Chai YH, 1999, J NEUROSCI, V19, P10338
[9]   Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1 [J].
Cummings, CJ ;
Mancini, MA ;
Antalffy, B ;
DeFranco, DB ;
Orr, HT ;
Zoghbi, HY .
NATURE GENETICS, 1998, 19 (02) :148-154
[10]   Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation [J].
Davies, SW ;
Turmaine, M ;
Cozens, BA ;
DiFiglia, M ;
Sharp, AH ;
Ross, CA ;
Scherzinger, E ;
Wanker, EE ;
Mangiarini, L ;
Bates, GP .
CELL, 1997, 90 (03) :537-548