Estimating live fuel moisture content from remotely sensed reflectance

被引:172
作者
Danson, FM [1 ]
Bowyer, P [1 ]
机构
[1] Univ Salford, Sch Environm & Life Sci, Telford Inst Environm Sci, Manchester M5 4WT, Lancs, England
关键词
fuel moisture content; leaf water content; water index; normalised difference water index; Prospect model; LOPEX;
D O I
10.1016/j.rse.2004.03.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fuel moisture content (FMC) is used in forest fire danger models to characterise the moisture status of the foliage. FMC expresses the amount of water in a leaf relative to the amount of dry matter and differs from measures of leaf water content which express the amount of water in a leaf relative to its area. FMC is related to both leaf water content and leaf dry matter content, and the relationships between FMC and remotely sensed reflectance will therefore be affected by variation in both leaf biophysical properties. This paper uses spectral reflectance data from the Leaf Optical Properties EXperiment (LOPEX) and modelled data from the Prospect leaf reflectance model to examine the relationships between FMC, leaf equivalent water thickness (EWT) and a range of spectral vegetation indices (VI) designed to estimate leaf and canopy water content. Significant correlations were found between FMC and all of the selected vegetation indices for both modelled and measured data, but statistically stronger relationships were found with leaf EWT; overall, the water index (WI) was found to be most strongly correlated with FMC. The accuracy of FMC estimation was very low when the global range of FMC was examined, but for a restricted range of 0-100%. FMC was estimated with a root-mean-square error (RMSE) of 15% in the model simulations and 51% with the measured data. The paper shows that the estimation of live FMC from remotely sensed vegetation indices is likely to be problematic when there is variability in both leaf water content and leaf dry matter content in the target leaves. Estimating FMC from remotely sensed data at the canopy level is likely to be farther complicated by spatial and temporal variations in leaf area index (LAI). Further research is required to assess the potential of canopy reflectance model inversion to estimate live fuel moisture content where a priori information on vegetation properties may be used to constrain the inversion process. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:309 / 321
页数:13
相关论文
共 51 条
[1]   Spectral reflectance of dehydrating leaves: measurements and modelling [J].
Aldakheel, YY ;
Danson, FM .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (17) :3683-3690
[2]   Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements [J].
Baret, F ;
Fourty, T .
AGRONOMIE, 1997, 17 (9-10) :455-464
[3]  
BARET F, 1995, REMOTE SENS ENVIRON, V54, P161
[4]   Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level [J].
Bowyer, P ;
Danson, FM .
REMOTE SENSING OF ENVIRONMENT, 2004, 92 (03) :297-308
[5]   PRIMARY AND SECONDARY EFFECTS OF WATER-CONTENT ON THE SPECTRAL REFLECTANCE OF LEAVES [J].
CARTER, GA .
AMERICAN JOURNAL OF BOTANY, 1991, 78 (07) :916-924
[6]   Detecting vegetation leaf water content using reflectance in the optical domain [J].
Ceccato, P ;
Flasse, S ;
Tarantola, S ;
Jacquemoud, S ;
Grégoire, JM .
REMOTE SENSING OF ENVIRONMENT, 2001, 77 (01) :22-33
[7]   Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach [J].
Ceccato, P ;
Gobron, N ;
Flasse, S ;
Pinty, B ;
Tarantola, S .
REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) :188-197
[8]   Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach [J].
Ceccato, P ;
Gobron, N ;
Flasse, S ;
Pinty, B ;
Tarantola, S .
REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) :188-197
[9]   ASSESSING GRASSLAND MOISTURE AND BIOMASS IN TASMANIA - THE APPLICATION OF REMOTE-SENSING AND EMPIRICAL-MODELS FOR A CLOUDY ENVIRONMENT [J].
CHLADIL, MA ;
NUNEZ, M .
INTERNATIONAL JOURNAL OF WILDLAND FIRE, 1995, 5 (03) :165-171
[10]  
Chuvieco E, 2003, INT J REMOTE SENS, V24, P1621, DOI [10.1080/01431160310144660, 10.1080/01431160210144660]