VEGF signaling through NADPH oxidase-derived ROS

被引:199
作者
Ushio-Fukai, Masuko [1 ]
机构
[1] Univ Illinois, Coll Med, Dept Pharmacol, Ctr Lung & Vasc Biol, Chicago, IL 60612 USA
关键词
D O I
10.1089/ars.2007.1556
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Angiogenesis is a key process involved in normal development and wound repair, as well as ischemic heart and limb diseases, and atherosclerosis. Vascular endothelial growth factor (VEGF), a potent angiogenesis factor, stimulates proliferation, migration, and tube formation of endothelial cells (ECs), primarily through the VEGF receptor type2 (VEGFR2). Reactive oxygen species (ROS) function as signaling molecules to mediate biological responses. In ECs, NADPH oxidase is one of the major sources of ROS and consists of catalytic subunits (Nox1, Nox2, and Nox4), p22phox, p47phox, p67phox, and the small GTPase Rac1. VEGF stimulates ROS production via activation of gp91phox (Nox2)-based NADPH oxidase, and ROS are involved in VEGFR2-mediated signaling linked to EC migration and proliferation. Moreover, ROS derived from NADPH oxidase are involved in postnatal angiogenesis. Localizing NADPH oxidase and its regulators at the specific subcellular compartment is an important mechanism for activating specific redox signaling events. This review focuses on a role of NADPH oxidase-derived ROS in angiogenesis and critical regulators involved in generation of spatially and temporally restricted ROS-dependent VEGF signaling at leading edge, focal adhesions/complexes, caveolae/lipid rafts, and cell-cell junctions in ECs. Understanding these mechanisms should facilitate the development of new therapeutic strategies to modulate new blood vessel formation.
引用
收藏
页码:731 / 739
页数:9
相关论文
共 113 条
[1]   NADPH oxidase activity is required for endothelial cell proliferation and migration [J].
Abid, MR ;
Kachra, Z ;
Spokes, KC ;
Aird, WC .
FEBS LETTERS, 2000, 486 (03) :252-256
[2]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[3]   Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy [J].
Al-Shabrawey, M ;
Bartoli, M ;
El-Remessy, AB ;
Platt, DH ;
Matragoon, S ;
Behzadian, MA ;
Caldwell, RW ;
Caldwall, RB .
AMERICAN JOURNAL OF PATHOLOGY, 2005, 167 (02) :599-607
[4]   Direct interaction of the novel nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase [J].
Ambasta, RK ;
Kumar, P ;
Griendling, KK ;
Schmidt, HHHW ;
Busse, R ;
Brandes, RP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (44) :45935-45941
[5]   Reactive oxygen generated by Nox1 triggers the angiogenic switch [J].
Arbiser, JL ;
Petros, J ;
Klafter, R ;
Govindajaran, B ;
McLaughlin, ER ;
Brown, LF ;
Cohen, C ;
Moses, M ;
Kilroy, S ;
Arnold, RS ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :715-720
[6]   NADPH oxidase: An update [J].
Babior, BM .
BLOOD, 1999, 93 (05) :1464-1476
[7]   The NADPH oxidase of endothelial cells [J].
Babior, BM .
IUBMB LIFE, 2000, 50 (4-5) :267-269
[8]   Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis [J].
Bazzoni, G ;
Dejana, E .
PHYSIOLOGICAL REVIEWS, 2004, 84 (03) :869-901
[9]   ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA [J].
Boshans, RL ;
Szanto, S ;
van Aelst, L ;
D'Souza-Schorey, C .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (10) :3685-3694
[10]   IQGAP proteins are integral components of cytoskeletal regulation [J].
Briggs, MW ;
Sacks, DB .
EMBO REPORTS, 2003, 4 (06) :571-574