Thermodynamic and structural studies of cavity formation in proteins suggest that loss of packing interactions rather than the hydrophobic effect dominates the observed energetics

被引:67
作者
Ratnaparkhi, GS
Varadarajan, R [1 ]
机构
[1] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India
[2] TIFR Ctr, Natl Ctr Biol Sci, Bangalore 560065, Karnataka, India
[3] Jawaharlal Nehru Ctr Adv Sci Res, Chem Biol Unit, Bangalore 560064, Karnataka, India
关键词
D O I
10.1021/bi000775k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
引用
收藏
页码:12365 / 12374
页数:10
相关论文
共 53 条
[2]   THE PROTEIN-FOLDING PROBLEM - THE NATIVE FOLD DETERMINES PACKING, BUT DOES PACKING DETERMINE THE NATIVE FOLD [J].
BEHE, MJ ;
LATTMAN, EE ;
ROSE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (10) :4195-4199
[3]  
BERSTEIN FC, 1977, J MOL BIOL, V112, P535
[4]  
BLOKZIJL W, 1993, ANGEW CHEM INT EDIT, V32, P1545, DOI 10.1002/anie.199315451
[5]   Structural and energetic responses to cavity-creating mutations in hydrophobic cores: Observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities [J].
Buckle, AM ;
Cramer, P ;
Fersht, AR .
BIOCHEMISTRY, 1996, 35 (14) :4298-4305
[6]   Residue depth: a novel parameter for the analysis of protein structure and stability [J].
Chakravarty, S ;
Varadarajan, R .
STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (07) :723-732
[7]   THERMODYNAMICS OF PROTEIN PEPTIDE INTERACTIONS IN THE RIBONUCLEASE-S SYSTEM STUDIED BY TITRATION CALORIMETRY [J].
CONNELLY, PR ;
VARADARAJAN, R ;
STURTEVANT, JM ;
RICHARDS, FM .
BIOCHEMISTRY, 1990, 29 (25) :6108-6114
[8]   THE MOLECULAR-SURFACE PACKAGE [J].
CONNOLLY, ML .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1993, 11 (02) :139-143
[9]   DOMINANT FORCES IN PROTEIN FOLDING [J].
DILL, KA .
BIOCHEMISTRY, 1990, 29 (31) :7133-7155
[10]   WIN SOME, LOSE SOME - ENTHALPY-ENTROPY COMPENSATION IN WEAK INTERMOLECULAR INTERACTIONS [J].
DUNITZ, JD .
CHEMISTRY & BIOLOGY, 1995, 2 (11) :709-712